Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 370, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861018

ABSTRACT

Members of the genus Lysinibacillus attract attention for their mosquitocidal, bioremediation, and plant growth-promoting abilities. Despite this interest, comprehensive studies focusing on genomic traits governing plant growth and stress resilience in this genus using whole-genome sequencing are still scarce. Therefore, we sequenced and compared the genomes of three endophytic Lysinibacillus irui strains isolated from Canary Island date palms with the ex-type strain IRB4-01. Overall, the genomes of these strains consist of a circular chromosome with an average size of 4.6 Mb and a GC content of 37.2%. Comparative analysis identified conserved gene clusters within the core genome involved in iron acquisition, phosphate solubilization, indole-3-acetic acid biosynthesis, and volatile compounds. In addition, genome analysis revealed the presence of genes encoding carbohydrate-active enzymes, and proteins that confer resistance to oxidative, osmotic, and salinity stresses. Furthermore, pathways of putative novel bacteriocins were identified in all genomes. This illustrates possible common plant growth-promoting traits shared among all strains of L. irui. Our findings highlight a rich repertoire of genes associated with plant lifestyles, suggesting significant potential for developing inoculants to enhance plant growth and resilience. This study is the first to provide insights into the overall genomic signatures and mechanisms of plant growth promotion and biocontrol in the genus Lysinibacillus. KEY POINTS: • Pioneer study in elucidating plant growth promoting in L. irui through comparative genomics. • Genome mining identified biosynthetic pathways of putative novel bacteriocins. • Future research directions to develop L. irui-based biofertilizers for sustainable agriculture.


Subject(s)
Bacillaceae , Genome, Bacterial , Genomics , Bacillaceae/genetics , Bacillaceae/metabolism , Base Composition , Multigene Family , Arecaceae/microbiology , Plant Development , Whole Genome Sequencing , Bacteriocins/genetics , Bacteriocins/metabolism , Bacteriocins/biosynthesis , Phylogeny , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Stress, Physiological
2.
Insects ; 15(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667404

ABSTRACT

Acetamiprid is a broad-spectrum neonicotinoid insecticide used in agriculture to control aphids. While recent studies have documented resistance to acetamiprid in several aphid species, the underlying mechanisms are still not fully understood. In this study, we analyzed the transcriptome and metatranscriptome of a laboratory strain of the pea aphid, Acyrthosiphon pisum (Harris, 1776), with reduced susceptibility to acetamiprid after nine generations of exposure to identify candidate genes and the microbiome involved in the adaptation process. Sequencing of the transcriptome of both selected (RS) and non-selected (SS) strains allowed the identification of 14,858 genes and 4938 new transcripts. Most of the differentially expressed genes were associated with catalytic activities and metabolic pathways involving carbon and fatty acids. Specifically, alcohol-forming fatty acyl-CoA reductase (FAR) and acyl-CoA synthetase (ACSF2), both involved in the synthesis of epidermal wax layer components, were significantly upregulated in RS, suggesting that adaptation to acetamiprid involves the synthesis of a thicker protective layer. Metatranscriptomic analyses revealed subtle shifts in the microbiome of RS. These results contribute to a deeper understanding of acetamiprid adaptation by the pea aphid and provide new insights for aphid control strategies.

3.
Insects ; 15(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276821

ABSTRACT

Silkworm ovary-derived BmN4 cells rely on chromatin-induced spindle assembly to form microtubule-based square mitotic spindles that ensure accurate segregation of holocentric chromosomes during cell division. The chromosome passenger protein Aurora B regulates chromosomal condensation and segregation, spindle assembly checkpoint activation, and cytokinesis; however, its role in holocentric organisms needs further clarification. This study examined the architecture and dynamics of spindle microtubules during prophase and metaphase in BmN4 cells and those with siRNA-mediated BmAurora B knockdown using immunofluorescence labeling. Anti-α-tubulin and anti-γ-tubulin antibodies revealed faint γ-tubulin signals colocalized with α-tubulin in early prophase during nuclear membrane rupture, which intensified as prophase progressed. At this stage, bright regions of α-tubulin around and on the nuclear membrane surrounding the chromatin suggested the start of microtubules assembling in the microtubule-organizing centers (MTOCs). In metaphase, fewer but larger γ-tubulin foci were detected on both sides of the chromosomes. This resulted in a distinctive multipolar square spindle with holocentric chromosomes aligned at the metaphase plate. siRNA-mediated BmAurora B knockdown significantly reduced the γ-tubulin foci during prophase, impacting microtubule nucleation and spindle structure in metaphase. Spatiotemporal BmAurora B expression analysis provided new insights into the regulation of this mitotic kinase in silkworm larval gonads during gametogenesis. Our results suggest that BmAurora B is crucial for the formation of multipolar square spindles in holocentric insects, possibly through the activation of γ-tubulin ring complexes in multiple centrosome-like MTOCs.

4.
Ecol Evol ; 13(7): e10338, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37475727

ABSTRACT

Phoretic mites attach to different body parts of the red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier, 1790), to disperse. However, the question of how the patterns of attachment sites are formed remains intriguing. Here, we examined RPW-associated phoretic mites in four districts in Northern Portugal (macrohabitat), and investigated the patterns of mite distribution on six body parts of RPW (microhabitat). At the macrohabitat level, we detected seven phoretic mite taxa using the RPW host in each of the four studied districts, all documented for the first time in association with this invasive exotic species in Portugal. However, their relative abundance (species evenness) varied between districts, as did species diversity. All examined weevils carried mites, and the prevalence of the different taxa did not differ between districts or sex of weevils. Measured by mean abundance and degree of aggregation, Centrouropoda sp. proved to be the dominant taxon, while Acarus sp. and Curculanoetus rhynchophorus were considered common subordinate taxa and Uroovobella sp., Mesostigmata, Nenteria extremica and Dendrolaelaps sp. sparse taxa. At the microhabitat level, all taxa were present on all body parts of the RPW; the highest abundance was in a region encompassing the inner surface of the elytra and the membranous hind wings (subelytral space). Analysis of niche overlap revealed that the distribution patterns of phoretic mite taxa on the RPW were not randomly structured. In the subelytral space, interspecific coexistence of mites increased as a function of body size difference with the dominant Centrouropoda sp. We found that in the subelytral space the large dominant species Centrouropoda sp. displaced the larger species Uroobovella sp. and the similarly sized species Nenteria extremica, but coexisted with smaller taxa.

5.
Aquichan ; 23(1): e2314, 13 ene 2023.
Article in English, Spanish | LILACS, BDENF - Nursing, COLNAL | ID: biblio-1436414

ABSTRACT

Objectives: To describe and correlate burden and social support in low-income caregivers of chronic patients. Material and methods: A descriptive and cross-sectional study was conducted with 170 low-income family caregivers of people with chronic diseases who answered a survey on sociodemographic and care variables, in addition to the Zarit scale to measure burden and the MOS questionnaire on perceived social support. The analysis was performed using descriptive and differential statistics. Results: Most caregivers were female, and the predominant kinship was father-son. A significant and negative correlation (rs = -.307, p < 0.001) was identified between the caregivers' burden and perceived social support, as well as a significant and positive correlation (rs = 0.278, p < 0.01) between the time devoted to care and the caregivers' burden. Conclusions: Low-income family caregivers require more social support to reduce the burden levels.


Objetivos: describir y correlacionar la sobrecarga y el apoyo social de cuidadores de pacientes crónicos con bajos ingresos económicos. Material y métodos: estudio descriptivo transversal realizado a 170 cuidadores familiares de personas con enfermedad crónica de bajos ingresos económicos a quienes se les aplicó una encuesta sobre variables sociodemográficas y de cuidado, además de la escala Zarit para medir la sobrecarga y el cuestionario MOS sobre apoyo social percibido. El análisis se realizó mediante estadística descriptiva y diferencial. Resultados: la mayoría de los cuidadores fueron mujeres y el vínculo filial predominante fue de padre e hijo. Se identificó una correlación significativa y negativa (rs = -0,307, p < 0,001) entre la sobrecarga del cuidador y el apoyo social percibido, como también una correlación significativa y positiva (rs = 0,278, p < 0,001) entre el tiempo dedicado al cuidado y la carga del cuidador. Conclusiones: los cuidadores familiares de bajos ingresos económicos requieren mayor apoyo social para disminuir los niveles de sobrecarga.


Objetivos: Descrever e correlacionar a sobrecarga e o suporte social de cuidadores de baixa renda de pacientes crônicos. Material e métodos: Estudo descritivo e transversal, realizado com 170 cuidadores familiares de baixa renda de pessoas com doenças crônicas, que responderam a um questionário sobre variáveis sociodemográficas e assistenciais, além da escala de Zarit para medir a sobrecarga e do questionário MOS sobre suporte social percebido. A análise foi realizada por meio de estatística descritiva e diferencial. Resultados: A maioria dos cuidadores era do sexo feminino e o vínculo filial predominante era entre pai e filho. Foi identificada uma correlação significativa e negativa (rs = -0,307, p < 0,001) entre a sobrecarga do cuidador e o suporte social percebido, assim como uma correlação significativa e positiva (rs = 0,278, p < 0,001) entre o tempo dedicado ao cuidado e a carga do cuidador. Conclusões: Os cuidadores familiares de baixa renda necessitam de maior suporte social para reduzir os níveis de sobrecarga.


Subject(s)
Social Support , Chronic Disease , Caregivers , Cost of Illness
6.
AMB Express ; 12(1): 100, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35907065

ABSTRACT

The Gram-negative rod-shaped bacterium Serratia marcescens is an opportunistic pathogen of many organisms, including insects. We report the identification and optimal in vitro chitinase production conditions of a novel chitinolytic S. marcescens strain TC-1 isolated from a naturally infected white grub (Anomala corpulenta) collected from a peanut field at Nanyang city, Henan province, China. Strain identification was conducted by morphological, physiological, biochemical and molecular analyses. The amplified 16S rRNA gene of TC-1 showed a similarity greater than 99% with multiple strains of S. marcescens. Based on Neighbor-joining phylogenetic tree analysis of bacterial 16S rRNA gene sequences, TC-1 formed a clade with S. marcescens, clearly separated from other Serratia spp. The strain TC-1 showed larvicidal activities against five insect species (A. corpulenta, Plutella xylostella, Spodoptera exigua, Helicoverpa armigera, Bombyx mori) and the nematode Caenorhabditis elegans, but not against S. litura. The operating parameters of chitinase production by TC-1 were optimized by response surface methodology using a three-factor, three-level Box-Behnken experimental design. The effects of three independent variables i.e. colloidal chitin concentration (7-13 g l-1), incubation time (24-72 h) and incubation temperature (24-32 °C) on chitinase production by TC-1 were investigated. A regression model was proposed to correlate the independent variables for an optimal chitinase activity predicted as 20.946 U ml-1, using a combination of colloidal chitin concentration, incubation time and incubation temperature of 9.06 g l-1, 63.83 h and 28.12 °C, respectively. The latter agreed well with a mean chitinase activity of 20.761 ± 0.102 U ml-1 measured in the culture supernatants of TC-1 grown under similar conditions with a colloidal chitin concentration, incubation time and incubation temperature of 9 g l-1, 64 h and 28 °C, respectively. Our study revealed the S. marcescens strain TC-1 with potential as a biocontrol agent of insect pests and nematodes and demonstrated the proposed regression model's potential to guide chitinase production by this strain.

7.
BMC Plant Biol ; 22(1): 276, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35659526

ABSTRACT

BACKGROUND: Chemical fertilisers are extensively used for crop production, which may cause soil deterioration and water pollution. Endophytic bacteria with plant-growth-promoting (PGP) activities may provide a solution to sustainably improve crop yields, including in-demand staples such as wheat. However, the diversity of the PGP endophytic bacteria in wheat across plant organs and growth stages has not been thoroughly characterised. RESULTS: Here, we report the isolation of endophytic bacteria from root, stem, leaf and seed of three winter wheat varieties at tillering, jointing, heading and seed-filling growth stages that were identified via 16S rRNA gene sequence analysis. Strains were screened for indole-3-acetic acid (IAA) production, potassium and phosphate solubilisation and the ability to grow on a nitrogen-free medium. Strain's capacity to stimulate various plant growth parameters, such as dry root weight, dry above-ground parts weight and plant height, was evaluated in pot trials. A total of 127 strains were randomly selected from 610 isolated endophytic bacterial cultures, representing ten genera and 22 taxa. Some taxa were organ-specific; others were growth-stage-specific. Bacillus aryabhattai, B. stratosphericus, Leclercia adecarboxylata and Pseudomonas oryzihabitans were detected as wheat endophytes for the first time. The IAA production, inorganic phosphorous solubilisation, organic phosphorus solubilisation, potassium solubilisation and growth on N-free medium were detected in 45%, 29%, 37%, 2.4% and 37.8% of the 127 strains, respectively. In pot trials, each strain showed variable effects on inoculated wheat plants regarding the evaluated growth parameters. CONCLUSIONS: Wheat endophytic bacteria showed organ- and growth-stage diversity, which may reflect their adaptations to different plant tissues and seasonal variations, and differed in their PGP abilities. Bacillus was the most predominant bacterial taxa isolated from winter wheat plants. Our study confirmed wheat root as the best reservoir for screening endophytic bacteria with potential as biofertilisers.


Subject(s)
Plant Roots , Triticum , Bacteria , Endophytes , Phylogeny , Potassium , RNA, Ribosomal, 16S/genetics , Triticum/genetics
8.
Toxins (Basel) ; 14(6)2022 06 08.
Article in English | MEDLINE | ID: mdl-35737055

ABSTRACT

The silkworm's Cat L-like gene, which encodes a lysosomal cathepsin L-like cysteine protease, is thought to be part of the insect's innate immunity via an as-yet-undetermined mechanism. Assuming that the primary function of Cat L-like is microbial degradation in mature phagosomes, we hypothesise that the suppression of the Cat L-like gene expression would increase Bacillus thuringiensis (Bt) bacteraemia and toxicity in knockdown insects. Here, we performed a functional analysis of Cat L-like in larvae that were fed mulberry leaves contaminated with a commercial biopesticide formulation based on Bt kurstaki (Btk) (i.e., Dipel) to investigate its role in insect defence against a known entomopathogen. Exposure to sublethal doses of Dipel resulted in overexpression of the Cat L-like gene in insect haemolymph 24 and 48 h after exposure. RNA interference (RNAi)-mediated suppression of Cat L-like expression significantly increased the toxicity of Dipel to exposed larvae. Moreover, Btk replication was higher in RNAi insects, suggesting that Cat L-like cathepsin may be involved in a bacterial killing mechanism of haemocytes. Finally, our results confirm that Cat L-like protease is part of the antimicrobial defence of insects and suggest that it could be used as a target to increase the insecticidal efficacy of Bt-based biopesticides.


Subject(s)
Bacillus thuringiensis , Bombyx , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Biological Control Agents , Bombyx/genetics , Cathepsin L/genetics , Insecta , Larva/genetics , RNA Interference , Reproduction
10.
Microbiol Spectr ; 9(2): e0060421, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34704785

ABSTRACT

The spore-forming bacterium Bacillus thuringiensis (Bt) of the Bacillus cereus group uses toxin-opened breaches at the insect midgut epithelium to infest the hemolymph, where it can rapidly propagate despite antimicrobial host defenses and induce host death by acute septicemia. The response of Bt to host hemolymph and the latter's role in bacterial pathogenesis is an area that needs clarification. Here, we report a proteomic analysis of the Bt kurstaki strain HD73 (Btk) hemolymph stimulon showing significant changes in 60 (34 up- and 26 downregulated) differentially accumulated proteins (DAPs). Gene ontology (GO) enrichment analysis revealed that DAPs were mainly related to glutamate metabolism, transketolase activity, and ATP-dependent transmembrane transport. KEGG analysis disclosed that DAPs were highly enriched in the biosynthesis of bacterial secondary metabolites, ansamycins. Interestingly, about 30% of all DAPs were in silico predicted as putative virulence factors. Further characterization of hemolymph effects on Btk showed enhanced autoaggregation in liquid cultures and biofilm formation in microtiter polystyrene plates. Hemolymph-exposed Btk cells were less immunogenic in mice, suggesting epitope masking of selected surface proteins. Bioassays with intrahemocoelically infected Bombyx mori larvae showed that hemolymph preexposure significantly increased Btk toxicity and reproduction within the insect (spore count per cadaver) at low inoculum doses, possibly due to 'virulence priming'. Collectively, our findings suggest that the Btk hemolymph stimulon could be partially responsible for bacterial survival and propagation within the hemolymph of infected insects, contributing to its remarkable success as an entomopathogen. All mass spectrometry data are available via ProteomeXchange with identifier PXD021830. IMPORTANCE After ingestion by a susceptible insect and damaging its midgut epithelium, the bacterium Bacillus thuringiensis (Bt) reaches the insect blood (hemolymph), where it propagates despite the host's antimicrobial defenses and induces insect death by acute septicemia. Although the hemolymph stage of the Bt toxic pathway is determinant for the infested insects' fate, the response of Bt to hemolymph and the latter's role in bacterial pathogenesis has been poorly explored. In this study, we identified the bacterial proteins differentially expressed by Bt after hemolymph exposure. We found that about 30% of hemolymph-regulated Bt proteins were potential virulence factors, including manganese superoxide dismutase, a described inhibitor of hemocyte respiratory burst. Additionally, contact with hemolymph enhanced Bt virulence phenotypes, such as cell aggregation and biofilm formation, altered bacterial immunogenicity, and increased Bt toxicity to intrahemocoelically injected insects.


Subject(s)
Bacillus thuringiensis/physiology , Hemolymph , Insecta/microbiology , Phenotype , Proteomics , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins , Biofilms/growth & development , Female , Immune Evasion , Mice , Mice, Inbred BALB C , Oxidative Stress , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
11.
BMC Plant Biol ; 21(1): 78, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33546586

ABSTRACT

BACKGROUND: The Plutella xylostella PxSDF2L1 gene was previously reported to enhance insect resistance to pathogen at high basal transcription rate. PxSDF2L1 shows similitude with the stromal cell-derived factor 2 (SDF2), an ER stress-induced chaperon protein that is highly conserved throughout animals and plants. The precise biological function of SDF2 is not clear, but its expression is required for innate immunity in plants. Here, we investigate whether a continuous expression of PxSDF2L1 in Nicotiana benthamiana can similarly confer resistance to plant pathogen, particularly, the black shank Phytophthora parasitica var. nicotianae. RESULTS: The N. benthamiana plants were inoculated with agrobacteria transformed with a PVX-based binary vector carrying the PxSDF2L1 gene; similar agroinoculation experiments with a PVX vector carrying the GFP gene were used for controls. In pot trials, agroinfected N. benthamiana plants constitutively expressing PxSDF2L1 showed a significant reduction of stem disease symptoms caused by the inoculation with P. parasitica, compared with controls. CONCLUSIONS: We confirm a role of PxSDF2L1 in resistance to black shank, with a potential application to engineering active resistance against this oomycete in the commercial N. tabacum species and propose its evaluation in other crop families and plant pathogens.


Subject(s)
Disease Resistance , Genes, Insect , Moths/genetics , Nicotiana/genetics , Phytophthora/physiology , Plant Diseases/microbiology , Potexvirus/metabolism , Amino Acid Sequence , Animals , Insect Proteins/chemistry , Plants, Genetically Modified , Recombinant Proteins/metabolism
12.
Res Vet Sci ; 136: 18-24, 2021 May.
Article in English | MEDLINE | ID: mdl-33578290

ABSTRACT

Torque teno sus virus (TTSuV) infection is common in China's pig herd. Although of uncertain pathogenicity, TTSuVs have been reported as a worsening factor of other porcine diseases, including porcine circovirus associated disease (PCVAD), porcine respiratory diseases complex (PRDC) or porcine dermatitis and nephropathy syndrome (PDNS). To better understand the genetic diversity in TTSuVs, the complete genomes of two newly emerged isolates, referred to as HeN1-A9 and HeN1-A11, collected from pig samples at a large-scale pig farm in China, were analyzed. Phylogenetic relationships of TTSuV sequences separated TTSuV1 and TTSuVk2a groups and divided TTSuV1 into two major subtypes, including TTSuV1a and TTSuV1b; HeN1-A9 and HeN1-A11 strains classified into the TTSuV1a subtype. Recombination analysis demonstrated HeN1-A9 and HeN1-A11 were generated via recombination in the overlapping ORF1/ORF3 region of TTSuV1a genome, which we report for the first time. Furthermore, we found that HeN1-A9 could be replicated in cultured MARC-145 cells for 18 passages. Our findings may be useful for elucidating the characteristics and epidemic status of TTSuVs in China.


Subject(s)
DNA Virus Infections/veterinary , Swine Diseases/virology , Torque teno virus/isolation & purification , Animals , China/epidemiology , Circovirus/isolation & purification , DNA Virus Infections/epidemiology , Farms , Genome, Viral , Phylogeny , Swine , Swine Diseases/epidemiology , Torque teno virus/genetics
13.
Sci Rep ; 9(1): 2630, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30796291

ABSTRACT

Peritrophins are associated with structural and functional integrity of peritrophic membranes (PM), structures composed of chitin and proteins. PM lines the insect midgut and has roles in digestion and protection from toxins. We report the full-length cDNA cloning, molecular characterization and functional analysis of SfPER, a novel PM peritrophin A protein, in Spodoptera frugiperda. The predicted amino acid sequence indicated SfPER's domain structure as a CMCMC-type, consisting of a signal peptide and three chitin-binding (C) domains with two intervening mucin-like (M) domains. Phylogenetic analysis determined a close relationship between SfPER and another S. frugiperda PM peritrophin partial sequence. SfPER transcripts were found in larvae and adults but were absent from eggs and pupae. Chitin affinity studies with a recombinant SfPER-C1 peritrophin A-type domain fused to SUMO/His-tag confirmed that SfPER binds to chitin. Western blots of S. frugiperda larval proteins detected different sized variants of SfPER along the PM, with larger variants found towards the posterior PM. In vivo suppression of SfPER expression did not affect susceptibility of larvae to Bacillus thuringiensis toxin, but significantly decreased pupal weight and adult emergence, possibly due to PM structural alterations impairing digestion. Our results suggest SfPER could be a novel target for insect control.


Subject(s)
Insect Proteins/metabolism , Spodoptera/growth & development , Spodoptera/metabolism , Animals , Cell Membrane/metabolism , Chitin/metabolism , Feeding Behavior , Genes, Insect , Insect Proteins/chemistry , Insect Proteins/genetics , Larva/growth & development , Phylogeny , Protein Binding , Protein Domains , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA , Spodoptera/genetics
14.
Insect Sci ; 26(3): 479-498, 2019 Jun.
Article in English | MEDLINE | ID: mdl-28872766

ABSTRACT

Multitoxin Bt-crops expressing insecticidal toxins with different modes of action, for example, Cry and Vip, are expected to improve resistance management in target pests. While Cry1A resistance has been relatively well characterized in some insect species, this is not the case for Vip3A, for which no mechanism of resistance has yet been identified. Here we applied HT-SuperSAGE to analyze the transcriptome of the gut tissue of tobacco budworm Heliothis virescens (F.) laboratory-selected for Vip3Aa resistance. From a total of 1 324 252 sequence reads, 5 895 126-bp tags were obtained representing 17 751 nonsingleton unique transcripts (UniTags) from genetically similar Vip3Aa-resistant (Vip-Sel) and susceptible control (Vip-Unsel) strains. Differential expression was significant (≥2.5 fold or ≤0.4; P < 0.05) for 1989 sequences (11.2% of total UniTags), where 420 represented overexpressed (OE) and 1569 underexpressed (UE) genes in Vip-Sel. BLASTN searches mapped 419 UniTags to H. virescens sequence contigs, of which, 416 (106 OE and 310 UE) were unambiguously annotated to proteins in NCBI nonredundant protein databases. Gene Ontology distributed 345 of annotated UniTags in 14 functional categories with metabolism (including serine-type hydrolases) and translation/ribosome biogenesis being the most prevalent. A UniTag homologous to a particular member of the REsponse to PAThogen (REPAT) family was found among most overexpressed, while UniTags related to the putative Vip3Aa-binding ribosomal protein S2 (RpS2) were underexpressed. qRT-PCR of a subset of UniTags validated the HT-SuperSAGE data. This study is the first providing lepidopteran gut transcriptome associated with Vip3Aa resistance and a foundation for future attempts to elucidate the resistance mechanism.


Subject(s)
Bacterial Proteins , Moths/metabolism , Transcriptome , Animals , Gene Library , Insecticide Resistance/genetics , Larva/metabolism , Moths/genetics , Ribosomal Proteins/metabolism , Serine Proteases/metabolism
15.
BMC Res Notes ; 10(1): 603, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29162149

ABSTRACT

OBJECTIVE: The ubiquitous soil pathogen Rhizoctonia solani causes serious diseases in different plant species. Despite the importance of this disease, little is known regarding the molecular basis of susceptibility. SuperSAGE technology and next-generation sequencing were used to generate transcript libraries during the compatible Nicotiana tabacum-R. solani interaction. Also, we used the post-transcriptional silencing to evaluate the function of a group of important genes. RESULTS: A total of 8960 and 8221 unique Tag sequences identified as differentially up- and down-regulated were obtained. Based on gene ontology classification, several annotated UniTags corresponded to defense response, metabolism and signal transduction. Analysis of the N. tabacum transcriptome during infection identified regulatory genes implicated in a number of hormone pathways. Silencing of an mRNA induced by salicylic acid reduced the susceptibility of N. tabacum to R. solani. We provide evidence that the salicylic acid pathway was involved in disease development. This is important for further development of disease management strategies caused by this pathogen.


Subject(s)
Gene Expression Profiling , Nicotiana/genetics , Rhizoctonia/genetics , Expressed Sequence Tags , Genes, Plant , High-Throughput Nucleotide Sequencing , RNA Interference , Nicotiana/microbiology
17.
PLoS One ; 11(1): e0146223, 2016.
Article in English | MEDLINE | ID: mdl-26731660

ABSTRACT

Huanglongbing (HLB) constitutes the most destructive disease of citrus worldwide, yet no established efficient management measures exist for it. Brassinosteroids, a family of plant steroidal compounds, are essential for plant growth, development and stress tolerance. As a possible control strategy for HLB, epibrassinolide was applied to as a foliar spray to citrus plants infected with the causal agent of HLB, 'Candidatus Liberibacter asiaticus'. The bacterial titers were reduced after treatment with epibrassinolide under both greenhouse and field conditions but were stronger in the greenhouse. Known defense genes were induced in leaves by epibrassinolide. With the SuperSAGE technology combined with next generation sequencing, induction of genes known to be associated with defense response to bacteria and hormone transduction pathways were identified. The results demonstrate that epibrassinolide may provide a useful tool for the management of HLB.


Subject(s)
Brassinosteroids/pharmacology , Citrus/microbiology , Plant Diseases/microbiology , Rhizobiaceae/drug effects , Citrus/drug effects , Plant Leaves/microbiology
18.
BMC Biol ; 12: 48, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24935031

ABSTRACT

BACKGROUND: Transgenic crops expressing Bt toxins have substantial benefits for growers in terms of reduced synthetic insecticide inputs, area-wide pest management and yield. This valuable technology depends upon delaying the evolution of resistance. The 'high dose/refuge strategy', in which a refuge of non-Bt plants is planted in close proximity to the Bt crop, is the foundation of most existing resistance management. Most theoretical analyses of the high dose/refuge strategy assume random oviposition across refugia and Bt crops. RESULTS: In this study we examined oviposition and survival of Spodoptera frugiperda across conventional and Bt maize and explored the impact of oviposition behavior on the evolution of resistance in simulation models. Over six growing seasons oviposition rates per plant were higher in Bt crops than in refugia. The Cry1F Bt maize variety retained largely undamaged leaves, and oviposition preference was correlated with the level of feeding damage in the refuge. In simulation models, damage-avoiding oviposition accelerated the evolution of resistance and either led to requirements for larger refugia or undermined resistance management altogether. Since larval densities affected oviposition preferences, pest population dynamics affected resistance evolution: larger refugia were weakly beneficial for resistance management if they increased pest population sizes and the concomitant degree of leaf damage. CONCLUSIONS: Damaged host plants have reduced attractiveness to many insect pests, and crops expressing Bt toxins are generally less damaged than conventional counterparts. Resistance management strategies should take account of this behavior, as it has the potential to undermine the effectiveness of existing practice, especially in the tropics where many pests are polyvoltinous. Efforts to bring down total pest population sizes and/or increase the attractiveness of damaged conventional plants will have substantial benefits for slowing the evolution of resistance.


Subject(s)
Bacillus thuringiensis/physiology , Biological Evolution , Insecticide Resistance/genetics , Oviposition/physiology , Spodoptera/physiology , Zea mays/genetics , Zea mays/parasitology , Animals , Feeding Behavior , Female , Fertility , Plants, Genetically Modified , Population Dynamics
19.
Environ Microbiol ; 12(11): 2894-903, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20545748

ABSTRACT

SfT6 has been identified in a subtracted cDNA library of Spodoptera frugiperda larval midgut transcripts as a serine-protease gene downregulated within 24 h of intoxication with Bacillus thuringiensis Cry1Ca1 protein. In the present study, the specific role of SfT6 during Cry1Ca1 intoxication was investigated by RT-PCR and in vivo RNA interference. Quantitative real-time RT-PCR analysis showed SfT6 mRNA levels in the midgut tissue were significantly reduced after injecting or feeding 4th-instar larvae with specific long-size dsRNA. Gut juice-mediated in vitro protoxin activation and susceptibility for Cry1Ca1 were investigated in Sft6-knockdown larvae and compared with control treated with nonspecific dsRNA. Our results demonstrate SfT6 plays a determinant role in Cry1Ca1 toxicity against S. frugiperda since a decreased expression caused a reduced protoxin activation by larval gut juice and reduced susceptibility of insects to toxin in bioassays. We propose SfT6 downregulation occurring at the early stages of Cry1Ca1 intoxication is part of a complex and multifaceted defensive mechanism triggered in the insect gut to withstand B. thuringiensis pathogenesis.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Protein Precursors/toxicity , RNA Interference , Serine Endopeptidases/genetics , Spodoptera/drug effects , Spodoptera/genetics , Animals , Bacillus thuringiensis Toxins , Digestive System/metabolism , Gene Knockdown Techniques , Genes, Insect , Host-Pathogen Interactions , Larva/enzymology , Larva/genetics , Larva/microbiology , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/analysis , Serine Endopeptidases/metabolism , Spodoptera/enzymology , Spodoptera/metabolism , Spodoptera/microbiology
20.
Toxicon ; 51(4): 681-92, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18222513

ABSTRACT

The use of Bacillus thuringiensis Cry delta-endotoxins as bioinsecticides is threatened by the possibility of pest resistance. Determining transcriptional profiles of midgut cells early in Cry toxin poisoning is crucial for understanding the biochemical and molecular aspects of insect detoxification and for sustained use of such toxins. In this study, transcriptional responses of midgut cells from Spodoptera frugiperda third-instar larvae following treatment with Cry1Ca were investigated. Suppression subtractive hybridization (SSH) on insect midguts dissected at different time intervals during the first 24h of exposure to a sublethal concentration of Cry1Ca was used to isolate and identify S. frugiperda gut genes that change in expression on intoxication. After differential screening by membrane-based hybridization, 86 cDNA fragments were selected, sequenced, and analyzed in databases using BLASTN/BLASTX. The cDNA collection comprised a repertoire of genes mainly associated with metabolism, defence and oxidative stress. The expression of a subset of these genes was further investigated. Northern blot analysis confirmed the differential expression patterns between intoxicated and control larvae. The transcript accumulation rate at six different times taken after the initiation of the intoxication point was also examined. Differential expression of most genes examined was detected within 15 min after toxin challenge, where defence and oxidative stress-related genes were transcriptionally enhanced and metabolic-related genes were repressed.


Subject(s)
Bacterial Proteins/pharmacology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Spodoptera/drug effects , Animals , Bacillus thuringiensis Toxins , Biological Assay , Dose-Response Relationship, Drug , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Library , Larva/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...