Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cells ; 12(3)2023 01 27.
Article in English | MEDLINE | ID: mdl-36766765

ABSTRACT

Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disorder linked to intestinal barrier dysfunction and life stress. We have previously reported that female sex per se determines an increased susceptibility to intestinal barrier dysfunction after cold pain stress (CPS). We aimed to identify sex-related molecular differences in response to CPS in healthy subjects to understand the origin of sex bias predominance in IBS. In 13 healthy males and 21 females, two consecutive jejunal biopsies were obtained using Watson's capsule, at baseline, and ninety minutes after CPS. Total mucosal RNA and protein were isolated from jejunal biopsies. Expression of genes related to epithelial barrier (CLDN1, CLDN2, OCLN, ZO-1, and ZO-3), mast cell (MC) activation (TPSAB1, SERPINA1), and the glucocorticoid receptor (NR3C1) were analyzed using RT-qPCR. NR3C1, ZO-1 and OCLN protein expression were evaluated through immunohistochemistry and western blot, and mucosal inflammation through MC, lymphocyte, and eosinophil numbering. Autonomic, hormonal, and psychological responses to CPS were monitored. We found an increase in jejunal MCs, a reduced CLDN1 and OCLN expression, and an increased CLDN2 and SERPINA1 expression 90 min after CPS. We also found a significant decrease in ZO-1, OCLN, and NR3C1 gene expression, and a decrease in OCLN protein expression only in females, when compared to males. CPS induced a significant increase in blood pressure, plasma cortisol and ACTH, and subjective stress perception in all participants. Specific and independent sex-related molecular responses in epithelial barrier regulation are unraveled by acute stress in the jejunum of healthy subjects and may partially explain female predominance in IBS.


Subject(s)
Irritable Bowel Syndrome , Male , Humans , Female , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/metabolism , Jejunum/metabolism , Jejunum/pathology , Intestinal Mucosa/pathology , Intestines/pathology , Biopsy
2.
Cells ; 11(13)2022 06 28.
Article in English | MEDLINE | ID: mdl-35805133

ABSTRACT

Irritable bowel syndrome (IBS) is a disorder of brain-gut interaction characterised by abdominal pain and changes in bowel habits. In the diarrhoea subtype (IBS-D), altered epithelial barrier and mucosal immune activation are associated with clinical manifestations. We aimed to further evaluate plasma cells and epithelial integrity to gain understanding of IBS-D pathophysiology. One mucosal jejunal biopsy and one stool sample were obtained from healthy controls and IBS-D patients. Gastrointestinal symptoms, stress, and depression scores were recorded. In the jejunal mucosa, RNAseq and gene set enrichment analyses were performed. A morphometric analysis by electron microscopy quantified plasma cell activation and proximity to enteric nerves and glycocalyx thickness. Immunoglobulins concentration was assessed in the stool. IBS-D patients showed differential expression of humoral pathways compared to controls. Activation and proximity of plasma cells to nerves and IgG concentration were also higher in IBS-D. Glycocalyx thickness was lower in IBS-D compared to controls, and this reduction correlated with plasma cell activation, proximity to nerves, and clinical symptoms. These results support humoral activity and loss of epithelial integrity as important contributors to gut dysfunction and clinical manifestations in IBS-D. Additional studies are needed to identify the triggers of these alterations to better define IBS-D pathophysiology.


Subject(s)
Irritable Bowel Syndrome , Diarrhea/complications , Glycocalyx/metabolism , Humans , Intestinal Mucosa/pathology , Irritable Bowel Syndrome/complications , Nerve Fibers/pathology , Plasma Cells/metabolism
3.
Sci Rep ; 10(1): 20706, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244004

ABSTRACT

Corticotropin-releasing factor (CRF) has been identified in intestinal mucosal eosinophils and associated with psychological stress and gut dysfunction. Irritable bowel syndrome (IBS) is commonly characterized by altered intestinal motility, immune activation, and increased gut barrier permeability along with heightened susceptibility to psychosocial stress. Despite intensive research, the role of mucosal eosinophils in stress-associated gut dysfunction remains uncertain. In this study, we evaluated eosinophil activation profile and CRF content in the jejunal mucosa of diarrhea-predominant IBS (IBS-D) and healthy controls (HC) by gene/protein expression and transmission electron microscopy. We also explored the association between intestinal eosinophil CRF and chronic stress, and the potential mechanisms underlying the stress response by assessing eosinophil response to neuropeptides. We found that mucosal eosinophils displayed higher degranulation profile in IBS-D as compared to HC, with increased content of CRF in the cytoplasmic granules, which significantly correlated with IBS clinical severity, life stress background and depression. Eosinophils responded to substance P and carbachol by increasing secretory activity and CRF synthesis and release, without promoting pro-inflammatory activity, a profile similar to that found in mucosal eosinophils from IBS-D. Collectively, our results suggest that intestinal mucosal eosinophils are potential contributors to stress-mediated gut dysfunction through CRF production and release.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Diarrhea/metabolism , Eosinophils/metabolism , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/metabolism , Cell Line, Tumor , Female , Humans , Jejunum/metabolism , Male , Permeability , Stress, Psychological/metabolism
4.
Am J Gastroenterol ; 115(12): 2047-2059, 2020 12.
Article in English | MEDLINE | ID: mdl-32740086

ABSTRACT

INTRODUCTION: To determine the effect of peripheral CRF on intestinal barrier function in diarrhea-predominant IBS (IBS-D). Irritable bowel syndrome (IBS) pathophysiology has been linked to life stress, epithelial barrier dysfunction, and mast cell activation. Corticotropin-releasing factor (CRF) is a major mediator of stress responses in the gastrointestinal tract, yet its role on IBS mucosal function remains largely unknown. METHODS: Intestinal response to sequential i.v. 5-mL saline solution (placebo) and CRF (100 µg) was evaluated in 21 IBS-D and 17 healthy subjects (HSs). A 20-cm jejunal segment was perfused with an isosmotic solution and effluents collected at baseline, 30 minutes after placebo, and 60 minutes after CRF. We measured water flux, albumin output, tryptase release, stress hormones, cardiovascular and psychological responses, and abdominal pain. A jejunal biopsy was obtained for CRF receptor expression assessment. RESULTS: Water flux did not change after placebo in IBS-D and HS but significantly increased after CRF in IBS-D (P = 0.007). Basal luminal output of albumin was higher in IBS-D and increased further after CRF in IBS-D (P = 0.042). Basal jejunal tryptase release was higher in IBS-D, and CRF significantly increased it in both groups (P = 0.004), the response being higher in IBS-D than in HS (P = 0.0023). Abdominal pain worsened only in IBS-D after CRF and correlated with jejunal tryptase release, water flux, and albumin output. IBS-D displayed jejunal up-regulation of CRF2 and down-regulation of CRF1 compared with HS. DISCUSSION: Stress via CRF-driven mast cell activation seems to be relevant in the pathophysiology of IBS-D.


Subject(s)
Abdominal Pain/metabolism , Corticotropin-Releasing Hormone/pharmacology , Diarrhea/metabolism , Irritable Bowel Syndrome/metabolism , Jejunum/drug effects , Mast Cells/drug effects , Abdominal Pain/pathology , Adult , Diarrhea/pathology , Female , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Irritable Bowel Syndrome/pathology , Jejunum/metabolism , Jejunum/pathology , Male , Mast Cells/metabolism , Mast Cells/pathology , Middle Aged , Young Adult
5.
Am J Physiol Gastrointest Liver Physiol ; 316(6): G701-G719, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30767681

ABSTRACT

Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.


Subject(s)
Intestinal Mucosa , Irritable Bowel Syndrome , Epigenomics , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/physiopathology , Signal Transduction
6.
Sci Rep ; 8(1): 2255, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396473

ABSTRACT

Disturbed intestinal epithelial barrier and mucosal micro-inflammation characterize irritable bowel syndrome (IBS). Despite intensive research demonstrating ovarian hormones modulation of IBS severity, there is still limited knowledge on the mechanisms underlying female predominance in this disorder. Our aim was to identify molecular pathways involved in epithelial barrier dysfunction and female predominance in diarrhea-predominant IBS (IBS-D) patients. Total RNA and protein were obtained from jejunal mucosal biopsies from healthy controls and IBS-D patients meeting the Rome III criteria. IBS severity was recorded based on validated questionnaires. Gene and protein expression profiles were obtained and data integrated to explore biological and molecular functions. Results were validated by western blot. Tight junction signaling, mitochondrial dysfunction, regulation of actin-based motility by Rho, and cytoskeleton signaling were differentially expressed in IBS-D. Decreased TESK1-dependent cofilin 1 phosphorylation (pCFL1) was confirmed in IBS-D, which negatively correlated with bowel movements only in female participants. In conclusion, deregulation of cytoskeleton dynamics through TESK1/CFL1 pathway underlies epithelial intestinal dysfunction in the small bowel mucosa of IBS-D, particularly in female patients. Further understanding of the mechanisms involving sex-mediated regulation of mucosal epithelial integrity may have significant preventive, diagnostic, and therapeutic implications for IBS.


Subject(s)
Cofilin 1/metabolism , Intestinal Mucosa/pathology , Irritable Bowel Syndrome/physiopathology , Jejunum/pathology , Protein Serine-Threonine Kinases/metabolism , Adult , Biopsy , Blotting, Western , Disease Susceptibility , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Phosphorylation , Protein Processing, Post-Translational , Proteins/analysis , Proteins/isolation & purification , Proteome/analysis , RNA/analysis , RNA/isolation & purification , Sex Factors , Surveys and Questionnaires , Young Adult
7.
Am J Physiol Gastrointest Liver Physiol ; 314(2): G247-G255, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29146676

ABSTRACT

As the largest interface between the outside and internal milieu, the intestinal epithelium constitutes the first structural component facing potential luminal threats to homeostasis. This single-cell layer is the epicenter of a tightly regulated communication network between external and internal factors that converge to prime defensive responses aimed at limiting antigen penetration and the maintenance of intestinal barrier function. The defensive role developed by intestinal epithelial cells (IEC) relies largely on the variety of receptors they express at both extracellular (apical and basolateral) and intracellular compartments, and the capacity of IEC to communicate with immune and nervous systems. IEC recognize pathogen-associated molecules by innate receptors that promote the production of mucus, antimicrobial substances, and immune mediators. Epithelial cells are key to oral tolerance maintenance and also participate in adaptive immunity through the expression of immunoglobulin (Ig) receptors and by promoting local Ig class switch recombination. In IEC, different types of antigens can be sensed by multiple immune receptors that share signaling pathways to assure effective responses. Regulated defensive activity maintains intestinal homeostasis, whereas a breakdown in the control of epithelial immunity can increase the intestinal passage of luminal content and microbial invasion, leading to inflammation and tissue damage. In this review, we provide an updated overview of the type of immune receptors present in the human intestinal epithelium and the responses generated to promote effective barrier function and maintain mucosal homeostasis.


Subject(s)
Epithelial Cells/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , Receptors, Immunologic/immunology , Adaptive Immunity , Animals , Epithelial Cells/metabolism , Host-Pathogen Interactions/immunology , Humans , Immune Tolerance , Immunity, Innate , Intestinal Mucosa/metabolism , Ligands , Receptors, Immunologic/metabolism , Signal Transduction
8.
United European Gastroenterol J ; 5(6): 887-897, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29026603

ABSTRACT

BACKGROUND AND GOAL: Diarrhoea-predominant irritable bowel syndrome (IBS-D) exhibits intestinal innate immune and mucosal mast cell (MC) activation. MC stabilisers have been shown to improve IBS symptoms but the mechanism is unclear. Our primary aim was to investigate the effect of oral disodium cromoglycate (DSCG) on jejunal MC activation and specific innate immune signalling pathways in IBS-D, and secondarily, its potential clinical benefit. STUDY: Mucosal MC activation (by ultrastructural changes, tryptase release and gene expression) and innate immune signalling (by protein and gene expression) were quantified in jejunal biopsies from healthy (HS; n = 16) and IBS-D subjects after six months of either treatment with DSCG (600 mg/day, IBS-D-DSCG group; n = 18) or without treatment (IBS-D-NT group; n = 25). All IBS-D patients recorded abdominal pain and bowel habits at baseline and in the last 10 days prior to jejunal sampling. RESULTS: IBS-D-NT exhibited significant MC activation and over-expression of immune-related genes as compared to HS, whereas in IBS-D-DSCG MC activity and gene expression were similar to HS. Furthermore, DSCG significantly reduced abdominal pain and improved stool consistency. CONCLUSION: Oral DSCG modulates mucosal immune activity and improves gut symptoms in IBS-D patients. Future placebo-controlled clinical trials are needed for confirmation of clinical benefit of DSCG for IBS-D.

9.
J Gastroenterol Hepatol ; 32(1): 53-63, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27087165

ABSTRACT

Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS.


Subject(s)
Intestinal Mucosa/immunology , Intestinal Mucosa/physiopathology , Intestine, Small/immunology , Intestine, Small/physiopathology , Irritable Bowel Syndrome/etiology , Cell Adhesion Molecules , Cell Membrane Permeability , Digestion , Humans , Intestinal Absorption , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestine, Small/metabolism
10.
Rev Esp Enferm Dig ; 107(11): 686-96, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26541659

ABSTRACT

The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.


Subject(s)
Digestive System Diseases/physiopathology , Intestinal Mucosa/physiopathology , Intestines/physiopathology , Animals , Digestive System Diseases/immunology , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestines/immunology , Tight Junctions/pathology
11.
Rev. esp. enferm. dig ; 107(11): 686-696, nov. 2015. tab, ilus
Article in Spanish | IBECS | ID: ibc-145298

ABSTRACT

La superficie de la mucosa del tracto gastrointestinal está revestida de células epiteliales que establecen una barrera efectiva, mediante uniones intercelulares, entre el medio interno y el medio externo, impidiendo el paso de sustancias potencialmente nocivas. Sin embargo las células epiteliales también son responsables de la absorción de nutrientes y electrolitos, por lo que se requiere una barrera semipermeable que permita el paso selectivo a ciertas sustancias, mientras que evite el acceso a otras. Para ello, el intestino ha desarrollado la “función barrera intestinal”, un sistema defensivo compuesto por diferentes elementos, tanto extracelulares como celulares, que actúan de forma coordinada para impedir el paso de antígenos, toxinas y productos microbianos y, a la vez, mantiene el correcto desarrollo de la barrera epitelial, el sistema inmunitario y la adquisición de tolerancia hacia los antígenos de la dieta y la microbiota intestinal. La alteración de los mecanismos que componen la función barrera favorece el desarrollo de respuestas inmunitarias exageradas, y, aunque se desconoce su implicación exacta, la alteración de la función barrera intestinal se ha asociado al desarrollo de enfermedades inflamatorias en el tracto digestivo. En esta revisión se detallan los diferentes elementos que componen la función barrera intestinal y las alteraciones moleculares y celulares más características descritas en enfermedades digestivas asociadas a la disfunción de este mecanismo de defensa


The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the “intestinal barrier function”, a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism


Subject(s)
Female , Humans , Male , Gastrointestinal Diseases/immunology , Epithelial Cells/immunology , Microbiota/immunology , Microbiota/physiology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/prevention & control , Tight Junctions/immunology , Intestinal Mucosa/immunology , Morphogenesis/physiology , Morphogenesis/immunology , Gap Junctions/immunology , Homeostasis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...