Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Med Phys ; 50(11): 7304-7312, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37818904

ABSTRACT

BACKGROUND: In treatment planning for proton therapy a constant Relative Biological Effectiveness (RBE) of 1.1 is used, disregarding variations with linear energy transfer, clinical endpoint, or fractionation. PURPOSE: To present a methodology to analyze the variation of RBE with fractionation from clinical data of tumor control probability (TCP) and to apply it to study the response of prostate cancer to proton therapy. METHODS AND MATERIALS: We analyzed the dependence of the RBE on the dose per fraction by using the LQ model and the Poisson TCP formalism. Clinical tumor control probabilities for prostate cancer (low and intermediate risk) treated with photon and proton therapy for conventional fractionation (2 Gy(RBE)×37 fractions), moderate hypofractionation (3 Gy(RBE)×20 fractions) and hypofractionation (7.25 Gy(RBE)×5 fractions) were obtained from the literature and analyzed aiming at obtaining the RBE and its dependence on the dose per fraction. RESULTS: The theoretical analysis of the dependence of the RBE on the dose per fraction showed three distinct regions with RBE monotonically decreasing, increasing or staying constant with the dose per fraction, depending on the change of (α, ß) values between photon and proton irradiation (the equilibrium point being at (αp /ßp ) = (αX /ßX )(αX /αp )). An analysis of the clinical data showed RBE values that decline with increasing dose per fraction: for low risk RBE≈1.124, 1.119, and 1.102 for 1.82 Gy, 2.73 Gy and 6.59 Gy per fraction (physical proton doses), respectively; for intermediate risk RBE≈1.119 and 1.102 for 1.82 Gy and 6.59 Gy per fraction (physical proton doses), respectively. These values are nonetheless very close to the nominal 1.1 value. CONCLUSIONS: In this study, we have presented a methodology to analyze the RBE for different fractionations, and we used it to study clinical data for prostate cancer and evaluate the RBE versus dose per fraction. The analysis shows a monotonically decreasing RBE with increasing dose per fraction, which is expected from the LQ formalism and the changes in (α, ß) values between photon and proton irradiation. However, the calculations in this study have to be considered with care as they may be biased by limitations in the modeling assumptions and/or by the clinical data set used for the analysis.


Subject(s)
Prostatic Neoplasms , Proton Therapy , Male , Humans , Proton Therapy/methods , Relative Biological Effectiveness , Protons , Prostatic Neoplasms/radiotherapy , Linear Energy Transfer
2.
Cancers (Basel) ; 15(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37509320

ABSTRACT

The purpose of this work was to investigate the response of prostate cancer to different radiotherapy schedules, including hypofractionation, to evaluate potential departures from the linear-quadratic (LQ) response, to obtain the best-fitting parameters for low-(LR), intermediate-(IR), and high-risk (HR) prostate cancer and to investigate the effect of ADT on the radiobiological response. We constructed a dataset of the dose-response containing 87 entries/16,536 patients (35/5181 LR, 32/8146 IR, 20/3209 HR), with doses per fraction ranging from 1.8 to 10 Gy. These data were fit to tumour control probability models based on the LQ model, linear-quadratic-linear (LQL) model, and a modification of the LQ (LQmod) model accounting for increasing radiosensitivity at large doses. Fits were performed with the maximum likelihood expectation methodology, and the Akaike information criterion (AIC) was used to compare the models. The AIC showed that the LQ model was superior to the LQL and LQmod models for all risks, except for IR, where the LQL model outperformed the other models. The analysis showed a low α/ß for all risks: 2.0 Gy for LR (95% confidence interval: 1.7-2.3), 3.4 Gy for IR (3.0-4.0), and 2.8 Gy for HR (1.4-4.2). The best fits did not show proliferation for LR and showed moderate proliferation for IR/HR. The addition of ADT was consistent with a suppression of proliferation. In conclusion, the LQ model described the response of prostate cancer better than the alternative models. Only for IR, the LQL model outperformed the LQ model, pointing out a possible saturation of radiation damage with increasing dose. This study confirmed a low α/ß for all risks.

3.
Article in English | MEDLINE | ID: mdl-35544486

ABSTRACT

There is evidence of synergy between radiotherapy and immunotherapy. Radiotherapy can increase liberation of tumor antigens, causing activation of antitumor T-cells. This effect can be boosted with immunotherapy. Radioimmunotherapy has potential to increase tumor control rates. Biomathematical models of response to radioimmunotherapy may help on understanding of the mechanisms affecting response, and assist clinicians on the design of optimal treatment strategies. In this work we present a biomathematical model of tumor response to radioimmunotherapy. The model uses the linear-quadratic response of tumor cells to radiation (or variation of it), and builds on previous developments to include the radiation-induced immune effect. We have focused this study on the combined effect of radiotherapy and αPDL1/ αCTLA4 therapies. The model can fit preclinical data of volume dynamics and control obtained with different dose fractionations and αPDL1/ αCTLA4. A biomathematical study of optimal combination strategies suggests that a good understanding of the involved biological delays, the biokinetics of the immunotherapy drug, and the interplay between them, may be of paramount importance to design optimal radioimmunotherapy schedules. Biomathematical models like the one we present can help to interpret experimental data on the synergy between radiotherapy and immunotherapy, and to assist in the design of more effective treatments.


Subject(s)
Neoplasms , Radioimmunotherapy , Humans , Neoplasms/radiotherapy , Immunotherapy
4.
Phys Med ; 103: 147-156, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36327676

ABSTRACT

PURPOSE: Air-vented ionization chambers have been the secondary standard for radiation dosimetry since the origins of radiation metrology. However, the feasibility of their use in ultra-high dose rate pulsed beams has been a matter of discussion, as large losses are caused by ion recombinations and no suitable theoretical model is available for their correction. The theories developed by Boag and his contemporaries since the 1950s, which have provided the standard ion recombination correction factor in clinical dosimetry, do not provide an accurate description when used under the limit conditions of ultra-high dose rates (UHDRs). Moreover, the high-ion recombination effects of ionization chambers under extreme dose-rate applications are an obstacle to the development of adequate dosimetry standards. METHODS: In this article, the charge carrier transport equations within a parallel plate ionization chamber (PPIC) have been solved numerically with a double aim. First, this numerical model provides a more accurate tool that can be used to evaluate ion recombination correction for established PPICs in pulsed ultra-high dose rate regimes. Second, studying the chamber behavior in detail allow as to explore the limits of new chamber designs in order to improve their performance under UHDRs. The model presented here has been tested by measuring the instantaneous current of one unit of a Roos chamber (i.e., the time-resolved current during and after the irradiation pulse under UHDR conditions) and comparing these results with the absolute value of the simulated current. RESULTS: The experimental data show consistent agreement with the results obtained using the numerical model. The experimental instantaneous current reveals effects such as the variation of the free electron fraction with the dose per pulse that are supported by the numerical model but cannot be explained in the framework of Boag's theory. CONCLUSIONS: Numerical solutions of the charge carrier released and transport in ionization chambers are able to estimate the effects observed when PPICs are irradiated with ultra-high dose rate beams and to provide new insight into processes related to recombination losses at UHDRs. These models can be reliably extended to include regions where current analytical solutions are not valid. An agreement of better than 5 % between the experimental and simulated effective free electron fraction is found. We were able to reproduce the instantaneous current from a Roos chamber. The discrepancies observed between the experimental data and the numerical simulations can be attributed to the uncertainty about the transport parameters involved in the calculation.


Subject(s)
Electrons , Radiometry , Radiometry/methods , Models, Theoretical
5.
Med Phys ; 49(7): 4705-4714, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35416306

ABSTRACT

BACKGROUND: Conventional air ionization chambers (ICs) exhibit ion recombination correction factors that deviate substantially from unity when irradiated with dose per pulse magnitudes higher than those used in conventional radiotherapy. This fact makes these devices unsuitable for the dosimetric characterization of beams in ultra-high dose per pulse as used for FLASH radiotherapy. PURPOSE: We present the design, development, and characterization of an ultra-thin parallel plate IC that can be used in ultra-high dose rate (UHDR) deliveries with minimal recombination. METHODS: The charge collection efficiency (CCE) of parallel plate ICs was modeled through a numerical solution of the coupled differential equations governing the transport of charged carriers produced by ionizing radiation. It was used to find out the optimal parameters for the purpose of designing an IC capable of exhibiting a linear response with dose (deviation less than 1%) up to 10 Gy per pulse at 4 µ $\umu$ s pulse duration. As a proof of concept, two vented parallel plate IC prototypes have been built and tested in different ultra-high pulse dose rate electron beams. RESULTS: It has been found that by reducing the distance between electrodes to a value of 0.25 mm it is possible to extend the dose rate operating range of parallel plate ICs to ultra-high dose per pulse range, at standard voltage of clinical grade electrometers, well into several Gy per pulse. The two IC prototypes exhibit behavior as predicted by the numerical simulation. One of the so-called ultra-thin parallel plate ionization chamber (UTIC) prototypes was able to measure up to 10 Gy per pulse, 4 µ $\umu$ s pulse duration, operated at 300 V with no significant deviation from linearity within the uncertainties (ElectronFlash Linac, SIT). The other prototype was tested up to 5.4 Gy per pulse, 2.5 µ $\umu$ s pulse duration, operated at 250 V with CCE higher than 98.6% (Metrological Electron Accelerator Facility, MELAF at Physikalisch-Technische Bundesanstalt, PTB). CONCLUSIONS: This work demonstrates the ability to extend the dose rate operating range of ICs to ultra-high dose per pulse range by reducing the spacing between electrodes. The results show that UTICs are suitable for measurement in UHDR electron beams.


Subject(s)
Particle Accelerators , Radiometry , Electrons , Radiation, Ionizing , Radiotherapy Dosage
6.
Pharmaceutics ; 13(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34575575

ABSTRACT

Pharmacokinetic modeling of the radiopharmaceuticals used in molecular radiotherapy is an important step towards accurate radiation dosimetry of such therapies. In this paper, we present a pharmacokinetic model for CLR1404, a phospholipid ether analog that, labeled with 124I/131I, has emerged as a promising theranostic agent. We follow a systematic approach for the model construction based on a decoupling process applied to previously published experimental data, and using the goodness-of-fit, Sobol's sensitivity analysis, and the Akaike Information Criterion to construct the optimal form of the model, investigate potential simplifications, and study factor prioritization. This methodology was applied to previously published experimental human time-activity curves for 9 organs. The resulting model consists of 17 compartments involved in the CLR1404 metabolism. Activity dynamics in most tissues are well described by a blood contribution plus a two-compartment system, describing fast and slow uptakes. The model can fit both clinical and pre-clinical kinetic data of 124I/131I. In addition, we have investigated how simple fits (exponential and biexponential) differ from the complete model. Such fits, despite providing a less accurate description of time-activity curves, may be a viable alternative when limited data is available in a practical case.

7.
Med Phys ; 48(9): 5448-5458, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34260065

ABSTRACT

PURPOSE: To obtain individualized internal doses with a Monte Carlo (MC) method in patients undergoing diagnostic [18F]FCH-PET studies and to compare such doses with the MIRD method calculations. METHODS: A patient cohort of 17 males were imaged after intravenous administration of a mean [18F]FCH activity of 244.3 MBq. The resulting PET/CT images were processed in order to generate individualized input source and geometry files for dose computation with the MC tool GATE. The resulting dose estimates were studied and compared to the MIRD method with two different computational phantoms. Mass correction of the S-factors was applied when possible. Potential sources of uncertainty were closely examined: the effect of partial body images, urinary bladder emptying, and biokinetic modeling. RESULTS: Large differences in doses between our methodology and the MIRD method were found, generally in the range ±25%, and up to ±120% for some cases. The mass scaling showed improvements, especially for non-walled and high-uptake tissues. Simulations of the urinary bladder emptying showed negligible effects on doses to other organs, with the exception of the prostate. Dosimetry based on partial PET/CT images (excluding the legs) resulted in an overestimation of mean doses to bone, skin, and remaining tissues, and minor differences in other organs/tissues. Estimated uncertainties associated with the biokinetics of FCH introduce variations of cumulated activities in the range of ±10% in the high-uptake organs. CONCLUSIONS: The MC methodology allows for a higher degree of dosimetry individualization than the MIRD methodology, which in some cases leads to important differences in dose values. Dosimetry of FCH-PET based on a single partial PET study seems viable due to the particular biokinetics of FCH, even though some correction factors may need to be applied to estimate mean skin/bone doses.


Subject(s)
Positron Emission Tomography Computed Tomography , Radiometry , Choline/analogs & derivatives , Humans , Male , Monte Carlo Method , Phantoms, Imaging
8.
Radiother Oncol ; 161: 1-8, 2021 08.
Article in English | MEDLINE | ID: mdl-34015386

ABSTRACT

BACKGROUND AND PURPOSE: To investigate the possible contribution of indirect damage and damage saturation to tumour control obtained with SBRT/SRS treatments for early-stage NSCLC and brain metastases. METHODS AND MATERIALS: We have constructed a dataset of early-stage NSCLC and brain metastases dose-response. These data were fitted to models based on the linear-quadratic (LQ), the linear-quadratic-linear (LQL), and phenomenological modifications of the LQ-model to account for indirect cell damage. We use the Akaike-Information-Criterion formalism to compare performance, and studied the stability of the results with changes in fitting parameters and perturbations on dose/TCP values. RESULTS: In NSCLC, a modified LQ-model with a beta-term increasing with dose yields the best-fits for α/ß = 10 Gy. Only the inclusion of very fast accelerated proliferation or low α/ß values can eliminate such superiority. In brain, the LQL model yields the best-fits, and the ranking is not affected by variations of fitting parameters or dose/TCP perturbations. CONCLUSIONS: For α/ß = 10 Gy, a modified LQ-model with a beta-term increasing with dose provides better fits to NSCLC dose-response curves. For brain metastases, the LQL provides the best fit. This might be interpreted as a hint of indirect damage in NSCLC, and damage saturation in brain metastases. The results for NSCLC are strongly dependent on the value of α/ß and may require further investigation, while those for brain seem to be clearly significant. Our results can assist in the design of improved radiotherapy for NSCLC and brain metastases, aiming at avoiding over/under-treatment.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Brain Neoplasms/radiotherapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Dose Fractionation, Radiation , Dose-Response Relationship, Radiation , Humans , Linear Models , Lung Neoplasms/radiotherapy
9.
Med Phys ; 48(7): 4075-4084, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33704792

ABSTRACT

PURPOSE: The purpose of this study is to present a biomathematical model based on the dynamics of cell populations to predict the tolerability/intolerability of mucosal toxicity in head-and-neck radiotherapy. METHODS AND MATERIALS: Our model is based on the dynamics of proliferative and functional cell populations in irradiated mucosa, and incorporates the three As: Accelerated proliferation, loss of Asymmetric proliferation, and Abortive divisions. The model consists of a set of delay differential equations, and tolerability is based on the depletion of functional cells during treatment. We calculate the sensitivity (sen) and specificity (spe) of the model in a dataset of 108 radiotherapy schedules, and compare the results with those obtained with three phenomenological classification models, two based on a biologically effective dose (BED) function describing the tolerability boundary (Fowler and Fenwick) and one based on an equivalent dose in 2 Gy fractions (EQD2 ) boundary (Strigari). We also perform a machine learning-like cross-validation of all the models, splitting the database in two, one for training and one for validation. RESULTS: When fitting our model to the whole dataset, we obtain predictive values (sen + spe) up to 1.824. The predictive value of our model is very similar to that of the phenomenological models of Fowler (1.785), Fenwick (1.806), and Strigari (1.774). When performing a k = 2 cross-validation, the specificity and sensitivity in the validation dataset decrease for all models, from ˜1.82 to Ëœ1.55-1.63. For Fowler, the worsening is higher, down to 1.49. CONCLUSIONS: Our model has proved useful to predict the tolerability/intolerability of a dataset of 108 schedules. As the model is more mechanistic than other available models, it could prove helpful when designing unconventional dose fractionations, schedules not covered by datasets to which phenomenological models of toxicity have been fitted.


Subject(s)
Head and Neck Neoplasms , Radiation Injuries , Dose Fractionation, Radiation , Head and Neck Neoplasms/radiotherapy , Humans , Mucous Membrane , Neck , Radiotherapy Dosage
10.
Mol Pharm ; 17(12): 4667-4675, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33186043

ABSTRACT

Intracerebral hemorrhage (ICH), being the most severe cerebrovascular disease, accounts for 10-15% of all strokes. Hematoma expansion is one of the most important factors associated with poor outcome in intracerebral hemorrhage (ICH). Several studies have suggested that an "ischemic penumbra" might arise when the hematoma has a large expansion, but clinical studies are inconclusive. We performed a preclinical study to demonstrate the presence of hypoxic-ischemic tissue around the hematoma by means of longitudinal [18F]-fluoromisonidazole ([18F]-FMISO) PET/MRI studies over time in an experimental ICH model. Our results showed that all [18F]-FMISO PET/MRI images exhibited hypoxic-ischemic tissue around the hematoma area. A significant increase of [18F]-FMISO uptake was found at 18-24 h post-ICH when the maximum of hematoma volume is achieved and this increase disappeared before 42 h. These results demonstrate the presence of hypoxic tissue around the hematoma and open the possibility of new therapies aimed to reduce ischemic damage associated with ICH.


Subject(s)
Cerebral Hemorrhage/complications , Hematoma/diagnosis , Hypoxia-Ischemia, Brain/diagnosis , Misonidazole/analogs & derivatives , Stroke/prevention & control , Aged , Animals , Brain/blood supply , Brain/diagnostic imaging , Brain/pathology , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/pathology , Disease Models, Animal , Hematoma/etiology , Hematoma/pathology , Humans , Hypoxia-Ischemia, Brain/etiology , Hypoxia-Ischemia, Brain/pathology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Misonidazole/administration & dosage , Positron Emission Tomography Computed Tomography/methods , Rats , Stroke/etiology
11.
Phys Med Biol ; 65(24): 245015, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32615551

ABSTRACT

The linear-quadratic (LQ) model to describe the survival of irradiated cells may be the most frequently used biomathematical model in radiotherapy. There has been an intense debate on the mechanistic origin of the LQ model. An interesting approach is that of obtaining LQ-like behavior from kinetic models, systems of differential equations that model the induction and repair of damage. Development of such kinetic models is particularly interesting for application to continuous dose rate therapies, such as molecular radiotherapy or brachytherapy. In this work, we present a simple kinetic model that describes the kinetics of populations of tumor cells, rather than lethal/sub-lethal lesions, which may be especially useful for application to continuous dose rate therapies, as in molecular radiotherapy. The multi-compartment model consists of a set of three differential equations. The model incorporates in an easy way different cross-interacting compartments of cells forming a tumor, and may be of especial interest for studying dynamics of treated tumors. In the fast dose delivery limit, the model can be analytically solved, obtaining a simple closed-form expression. Fitting of several surviving curves with both this solution and the LQ model shows that they produce similar fits, despite being functionally different. We have also investigated the operation of the model in the continuous dose rate scenario, firstly by fitting pre-clinical data of tumor response to 131I-CLR1404 therapy, and secondly by showing how damage repair and proliferation rates can cause a treatment to achieve control or not. Kinetic models like the one presented in this work may be of special interest when modeling response to molecular radiotherapy.


Subject(s)
Models, Biological , Brachytherapy , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Humans , Kinetics , Linear Models , Neoplasms/pathology , Neoplasms/radiotherapy
12.
Int J Radiat Biol ; 96(9): 1165-1172, 2020 09.
Article in English | MEDLINE | ID: mdl-32589091

ABSTRACT

PURPOSE: To develop multi-compartment mechanistic models of dynamics of stem and functional cell populations in epithelium after irradiation. Methods and materials: We present two models, with three (3C) and four (4C) compartments respectively. We use delay differential equations, and include accelerated proliferation, loss of division asymmetry, progressive death of abortive stem cells, and turnover of functional cells. The models are used to fit experimental data on the variations of the number of cells in mice mucosa after irradiation with 13 Gy and 20 Gy. Akaike information criteria (AIC) was used to evaluate the performance of each model. RESULTS: Both 3C and 4C models provide good fits to experimental data for 13 Gy. Fits for 20 Gy are slightly poorer and may be affected by larger uncertainties and fluctuations of experimental data. Best fits are obtained by imposing constraints on the fitting parameters, so to have values that are within experimental ranges. There is some degeneration in the fits, as different sets of parameters provide similarly good fits. CONCLUSIONS: The models provide good fits to experimental data. Mechanistic approaches like this can facilitate the development of mucositis response models to nonstandard schedules/treatment combinations not covered by datasets to which phenomenological models have been fitted. Studying the dynamics of cell populations in multifraction treatments, and finding links with induced toxicity, is the next step of this work.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/radiation effects , Models, Biological , Cell Differentiation/radiation effects , Dose-Response Relationship, Radiation
13.
Med Phys ; 47(9): 4574-4588, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32569389

ABSTRACT

PURPOSE: The purpose of this work is to calculate individualized dose distributions in patients undergoing 18 F-FDG PET/CT studies through a methodology based on full Monte Carlo (MC) simulations and PET/CT patient images, and to compare such values with those obtained by employing nonindividualized phantom-based methods. METHODS: We developed a MC-based methodology for individualized internal dose calculations, which relies on CT images (for organ segmentation and dose deposition), PET images (for organ segmentation and distributions of activities), and a biokinetic model (which works with information provided by PET and CT images) to obtain cumulated activities. The software vGATE version 8.1. was employed to carry out the Monte Carlo calculations. We also calculated deposited doses with nonindividualized phantom-based methods (Cristy-Eckerman, Stabin, and ICRP-133). RESULTS: Median MC-calculated dose/activity values are within 0.01-0.03 mGy/MBq for most organs, with higher doses delivered especially to the bladder wall, major vessels, and brain (medians of 0.058, 0.060, 0.066 mGy/MBq, respectively). Comparison with values obtained with nonindividualized phantom-based methods has shown important differences in many cases (ranging from -80% to + 260%). These differences are significant (p < 0.05) for several organs/tissues, namely, remaining tissues, adrenals, bladder wall, bones, upper large intestine, heart, pancreas, skin, and stomach wall. CONCLUSIONS: The methodology presented in this work is a viable and useful method to calculate internal dose distributions in patients undergoing medical procedures involving radiopharmaceuticals, individually, with higher accuracy than phantom-based methods, fulfilling the guidelines provided by the European Council directive 2013/59/Euratom.


Subject(s)
Positron Emission Tomography Computed Tomography , Radiometry , Fluorodeoxyglucose F18 , Humans , Monte Carlo Method , Phantoms, Imaging
14.
Cancer Res ; 79(23): 6044-6053, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31641030

ABSTRACT

There is increasing evidence that high doses of radiotherapy, like those delivered in stereotactic body radiotherapy (SBRT), trigger indirect mechanisms of cell death. Such effect seems to be two-fold. High doses may trigger an immune response and may cause vascular damage, leading to cell starvation and death. Development of mathematical response models, including indirect death, may help clinicians to design SBRT optimal schedules. Despite increasing experimental literature on indirect tumor cell death caused by vascular damage, efforts on modeling this effect have been limited. In this work, we present a biomathematical model of this effect. In our model, tumor oxygenation is obtained by solving the reaction-diffusion equation; radiotherapy kills tumor cells according to the linear-quadratic model, and also endothelial cells (EC), which can trigger loss of functionality of capillaries. Capillary death will affect tumor oxygenation, driving nearby tumor cells into severe hypoxia. Capillaries can recover functionality due to EC proliferation. Tumor cells entering a predetermined severe hypoxia status die according to a hypoxia-death model. This model fits recently published experimental data showing the effect of vascular damage on surviving fractions. It fits surviving fraction curves and qualitatively reproduces experimental values of percentages of functional capillaries 48 hours postirradiation, and hypoxic cells pre- and 48 hours postirradiation. This model is useful for exploring aspects of tumor and EC response to radiotherapy and constitutes a stepping stone toward modeling indirect tumor cell death caused by vascular damage and accounting for this effect during SBRT planning. SIGNIFICANCE: A novel biomathematical model of indirect tumor cell death caused by vascular radiation damage could potentially help clinicians interpret experimental data and design better radiotherapy schedules.


Subject(s)
Apoptosis/radiation effects , Endothelium, Vascular/radiation effects , Models, Biological , Neoplasms/radiotherapy , Radiosurgery/methods , Capillaries/cytology , Capillaries/pathology , Capillaries/radiation effects , Cell Hypoxia/radiation effects , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation , Endothelial Cells/pathology , Endothelial Cells/radiation effects , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Humans , Neoplasms/blood supply , Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Treatment Outcome
15.
Phys Med Biol ; 64(20): 205007, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31519004

ABSTRACT

Diodes dosimeters present a complex response to pulsed beams, with diode sensitivity varying with dose-per-pulse, monitor unit rate (time between pulses) or number of integrated pulses. Such a response is caused by the complex kinetics of the interplay among charge carriers, recombination-generation centers, which capture excess minority charge carriers and facilitate recombination with a majority charge carrier, and traps with energy levels close to the conduction/valence band, which can trap and release charge carriers. This behavior has been well characterized experimentally, and modeled with phenomenological models. In this work we present a kinetic multi-compartment model of the response of diode detectors, which includes the interplay among charge carriers, recombination-generation centers, and traps. The model can qualitatively fit experimental data extracted from the literature on diode response versus dose-per-pulse, monitor unit rate (time between pulses), or number of integrated pulses. In this regard, our work provides further insight on the response of diode detectors, and a theoretical framework for the development of simple phenomenological models.


Subject(s)
Electrical Equipment and Supplies , Models, Statistical , Particle Accelerators/instrumentation , Radiometry/instrumentation , Radiometry/methods , Kinetics , Radiation Dosage
16.
J Radiol Prot ; 38(4): 1501-1511, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30255851

ABSTRACT

Nowadays therapies involving radioiodine (I-131) represent 84% of the total metabolic treatments in Europe, according to the last report of the European Association of Nuclear Medicine in relation to treatment planning for molecular radiotherapy. Last recommendations of the European Council, i.e. 2013/59/Euroatom, mandates that metabolic treatments should be planned according to the radiation doses delivered to individual patients, analogous to external beam radiotherapy. In this work, we present a novel biokinetic model for I-131 that allows on to obtain realistic activity distributions for particular patients with thyroid cancer in absence of metastasis. Other models existing in the literature present either a too simple metabolic description to obtain realistic results or a too complex one for adapting the model to individual patients, and many of these models are not indicated for metabolic treatments. The individualisation of activity distribution is obtained by an optimisation method that adjusts our model to a set of experimental measurements. Significant differences in terms of absorbed doses are observed between our model and the standard generalist models, especially in terms of red marrow absorbed dose.


Subject(s)
Iodine Radioisotopes/therapeutic use , Thyroid Neoplasms/radiotherapy , Adult , Aged , Female , Humans , Iodine Radioisotopes/pharmacokinetics , Male , Middle Aged , Models, Theoretical , Radiotherapy Dosage , Thyroid Neoplasms/metabolism
17.
PLoS One ; 13(4): e0196310, 2018.
Article in English | MEDLINE | ID: mdl-29698534

ABSTRACT

Motivated by the capabilities of modern radiotherapy techniques and by the recent developments of functional imaging techniques, dose painting by numbers (DPBN) was proposed to treat tumors with heterogeneous biological characteristics. This work studies different DPBN optimization techniques for virtual head and neck tumors assessing tumor response in terms of cell survival and tumor control probability with a previously published tumor response model (TRM). Uniform doses of 2 Gy are redistributed according to the microscopic oxygen distribution and the density distribution of tumor cells in four virtual tumors with different biological characteristics. In addition, two different optimization objective functions are investigated, which: i) minimize tumor cell survival (OFsurv) or; ii) maximize the homogeneity of the density of surviving tumor cells (OFstd). Several adaptive schemes, ranging from single to daily dose optimization, are studied and the treatment response is compared to that of the uniform dose. The results show that the benefit of DPBN treatments depends on the tumor reoxygenation capability, which strongly differed among the set of virtual tumors investigated. The difference between daily (fraction by fraction) and three weekly optimizations (at the beginning of weeks 1, 3 and 4) was found to be small, and higher benefit was observed for the treatments optimized using OFsurv. This in silico study corroborates the hypothesis that DPBN may be beneficial for treatments of tumors which show reoxygenation during treatment, and that a few optimizations may be sufficient to achieve this therapeutic benefit.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy/methods , Cell Survival , Computer Simulation , Dose-Response Relationship, Radiation , Humans , Hypoxia , Linear Models , Oxygen/chemistry , Probability , Radiotherapy Dosage , Time Factors
18.
Med Phys ; 45(4): 1771-1781, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29446083

ABSTRACT

PURPOSE: The aim of this study was to present a novel 2041 liquid-filled ionization chamber array for high-resolution verification of radiotherapy treatments. MATERIALS AND METHODS: The prototype has 2041 ionization chambers of 2.5 × 2.5 mm2 area filled with isooctane. The detection elements are arranged in a central square grid of 43 × 43, totally covering an area of 107.5 × 107.5 mm2 . The central inline and cross-line are extended to 227 mm and the diagonals to 321 mm to be able to perform profile measurements of large fields. We have studied stability, pixel response uniformity, dose rate dependence, depth and field size dependence and anisotropy. We present results for output factors, tongue-and-groove, garden fence, small field profiles, irregular fields, and verification of dose planes of patient treatments. RESULTS: Comparison with other detectors used for small field dosimetry (SFD, CC13, microDiamond) has shown good agreement. Output factors measured with the device for square fields ranging from 10 × 10 to 100 × 100 mm2 showed relative differences within 1%. The response of the detector shows a strong dependence on the angle of incident radiation that needs to be corrected for. On the other hand, inter-pixel relative response variations in the 0.95-1.08 range have been found and corrected for. The application of the device for the verification of dose planes of several treatments has shown gamma passing rates above 97% for tolerances of 2% and 2 mm. The verification of other clinical fields, like small fields and irregular fields used in the commissioning of the TPS, also showed large passing rates. The verification of garden fence and tongue-and-groove fields was affected by volume-averaging effects. CONCLUSIONS: The results show that the liquid filled ionization chamber prototype here presented is appropriate for the verification of radiotherapy treatments with high spatial resolution. Recombination effects do not affect very much the verification of relative dose distributions. However, verification of absolute dose distributions may require normalization to a radiation field which is representative of the dose rate of the treatment delivered.


Subject(s)
Radiometry/instrumentation , Radiotherapy , Calibration , Humans , Radiotherapy Dosage
19.
Eur J Nucl Med Mol Imaging ; 45(2): 196-206, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28936601

ABSTRACT

PURPOSE: This study aims to determine whether PET textural features measured with a new dedicated breast PET scanner reflect biological characteristics of breast tumors. METHODS: One hundred and thirty-nine breast tumors from 127 consecutive patients were included in this analysis. All of them underwent a 18F-FDG PET scan before treatment. Well-known PET quantitative parameters such as SUV m a x , SUV m e a n , metabolically active tumor volume (MATV) and total lesion glycolysis (TLG) were extracted. Together with these parameters, local, regional, and global heterogeneity descriptors, which included five textural features (TF), were computed. Immunohistochemical classification of breast cancer considered five subtypes: luminal A like (LA), luminal B like/HER2 - (LB -), luminal B like/HER2+ (LB+), HER2-positive-non-luminal (HER2pnl), and triple negative (TN). Associations between PET features and tumor characteristics were assessed using non-parametric hypothesis tests. RESULTS: Along with well-established associations, new correlations were found. HER2-positive tumors had significantly higher uptake (p < 0.001, AUCs > 0.70) and presented different global and regional heterogeneity (p = 0.002, p = 0.016, respectively, AUCs < 0.70). Nine out of ten analyzed features were significantly associated with immunohistochemical subtype. Uptake was lower for LA tumors (p < 0.001) with AUCs ranging from 0.71 to 0.88 for each subgroup comparison. Heterogeneity metrics were significantly associated when comparing LA and LB - (p < 0.01), being regional heterogeneity metrics more discriminative than any other parameter (AUC = 0.80 compared to AUC = 0.71 for SUV). LB+ and HER2pnl tumors also showed more regional heterogeneity than LA tumors (AUCs = 0.79 and 0.84, respectively). After comparison with whole-body PET studies, we observed an overall improvement in the classification ability of both non-heterogeneity metrics and textural features. CONCLUSIONS: PET parameters extracted from high-resolution dedicated breast PET images showed new and stronger correlations with immunohistochemical factors and immunohistochemical subtype of breast cancer compared to whole-body PET.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted , Positron-Emission Tomography , Signal-To-Noise Ratio , Breast Neoplasms/pathology , Female , Humans , Immunohistochemistry , Male , Middle Aged
20.
J Radiol Prot ; 37(4): N49-N54, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29140797

ABSTRACT

In this study we have characterised the learning curve for percutaneous nephrolithotomy procedures over 301 cases for six years. Different surrogate parameters of clinical expertise have been used, such as dose area product, total procedure time, fluoroscopy time and personal equivalent doses. In addition, two different endourologists have been monitored; one of whom had specific Radiation Protection training (ICRP 85). Eye lens dose was estimated from thermoluminescent dosimeters. Significant differences were observed between both endourologists, especially in the fluoroscopy time. Finally, both entrance skin dose and effective doses of patients have been determined.

SELECTION OF CITATIONS
SEARCH DETAIL
...