Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Chem Org Nat Prod ; 114: 253-311, 2021.
Article in English | MEDLINE | ID: mdl-33792862

ABSTRACT

The most significant new techniques that have been used in the twenty-first century for the structure elucidation of sesquiterpenes and some derivatives are reviewed in this chapter. A distinctive feature of these methodologies is the combination of accurate experimental measurements with theoretical data obtained by molecular modeling calculations that allow to visualize, understand, and quantify many structural characteristics. This has been the case for NMR spectroscopy, which has expanded its potential for solving complex structural problems by means of comparison with quantum mechanical molecular models. Ab initio and density functional theory calculations of chemical shifts, coupling constants, and residual chemical shift anisotropies have played important roles in the solution of many structures of sesquiterpenes. The assignments of their absolute configurations by evaluation of calculated and experimental chiroptical properties as electronic and vibrational circular dichroism are also reviewed. This chapter also includes the use of X-ray diffraction analysis with emphasis on calculations of the Flack and Hooft parameters, which are applicable to all molecules that crystallize in non-centrosymmetric space groups. The accurate molecular models of sesquiterpenes, validated by concordance with their experimental properties, are nowadays essential for the interpretation of the effects of these natural products on biological systems.


Subject(s)
Biological Products , Sesquiterpenes , Circular Dichroism , Models, Molecular , Molecular Structure
2.
J Nat Prod ; 82(3): 485-491, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30776238

ABSTRACT

A biomimetic transformation of p-menthene glucosides into aromatic monoterpenoids that alluded to mechanisms for essential oil metabolism, which lines up with the precepts of molecular economy, is described. Acid treatment of (-)-(3 S,4 S,6 R)-3,6-dihydroxy-1-menthene 3- O-ß-d-glucopyranoside (1) and (-)-(3 S,4 R,5 R,6 S)-3,5,6-trihydroxy-1-menthene 3- O-ß-d-glucopyranoside (2), from Ageratina glabrata, yielded p-cymene (7) and carvacrol (9). The stable oxidized intermediates (+)-(3 S,4 S,6 R)-3,6-dihydroxy-1-menthene (3), (+)-(1 S,4 S,6 R)-1,6-dihydroxy-2-menthene (4), (+)-(1 R,4 S,6 R)-1,6-dihydroxy-2-menthene (5), (+)-(4 S,6 R)-yabunikkeol (6), (+)-(4 S)-carvotanacetone (8), (+)-(1 S,4 S,5 R,6 R)-1,5,6-trihydroxy-2-menthene (15), (+)-(1 R,4 S,5 R,6 R)-1,5,6-trihydroxy-2-menthene (16), and the new (+)-(4 S,5 R,6 S)-1(7),2-menthadiene (17) permitted establishment of the reaction mechanisms. The reactivity of the hydroxy groups of 4 and 5, as well as those of 15 and 16, was compared by acetylation reactions and supported by DFT calculations, revealing diminished reactivity in 4 and 15 due to the cis configuration of their hydroxy groups at C-1 and C-6. In addition, p-cymene (7) was detected as one of the major constituents of the essential oil of A. glabrata, which matches well with the biomimetic study.


Subject(s)
Biomimetics , Biotransformation , Cymenes/metabolism , Glucosides/metabolism , Terpenes/metabolism , Cymenes/chemistry , Glucosides/chemistry , Molecular Structure , Spectrum Analysis/methods , Terpenes/chemistry
3.
J Nat Prod ; 81(1): 63-71, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29278331

ABSTRACT

A methodology to determine the enantiomeric excess and the absolute configuration (AC) of natural epoxythymols was developed and tested using five constituents of Ageratina glabrata. The methodology is based on enantiomeric purity determination employing 1,1'-bi-2-naphthol (BINOL) as a chiral solvating agent combined with vibrational circular dichroism (VCD) measurements and calculations. The conformational searching included an extensive Monte Carlo protocol that considered the rotational barriers to cover the whole conformational spaces. (+)-(8S)-10-Benzoyloxy-6-hydroxy-8,9-epoxythymol isobutyrate (1), (+)-(8S)-10-acetoxy-6-methoxy-8,9-epoxythymol isobutyrate (4), and (+)-(8S)-10-benzoyloxy-6-methoxy-8,9-epoxythymol isobutyrate (5) were isolated as enantiomerically pure constituents, while 10-isobutyryloxy-8,9-epoxythymol isobutyrate (2) was obtained as a 75:25 (8S)/(8R) scalemic mixture. In the case of 10-benzoyloxy-8,9-epoxythymol isobutyrate (3), the BINOL methodology revealed a 56:44 scalemic mixture and the VCD measurement was beyond the limit of sensitivity since the enantiomeric excess is only 12%. The racemization process of epoxythymol derivatives was studied using compound 1 and allowed the clarification of some stereochemical aspects of epoxythymol derivatives since their ACs have been scarcely analyzed and a particular behavior in their specific rotations was detected. In more than 30 oxygenated thymol derivatives, including some epoxythymols, the reported specific rotation values fluctuate from -1.6 to +1.4 passing through zero, suggesting the presence of scalemic and close to racemic mixtures, since enantiomerically pure natural constituents showed positive or negative specific rotations greater than 10 units.


Subject(s)
Ageratina/chemistry , Thymol/chemistry , Circular Dichroism/methods , Stereoisomerism
4.
J Nat Prod ; 79(10): 2570-2579, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27726359

ABSTRACT

The aerial parts of Ageratina glabrata afforded (-)-(3S,4R,5R,6S)-3,5,6-trihydroxy-1-menthene 3-O-ß-d-glucopyranoside (1) and (-)-(3S,4S,6R)-3,6-dihydroxy-1-menthene 3-O-ß-d-glucopyranoside (3). Acid hydrolysis of 1 yielded (+)-(1R,4S,5R,6R)-1,5,6-trihydroxy-2-menthene (5) and (+)-(1S,4S,5R,6R)-1,5,6-trihydroxy-2-menthene (6), while hydrolysis of 3 yielded (+)-(3S,4S,6R)-3,6-dihydroxy-1-menthene (10), (+)-(1R,4S,6R)-1,6-dihydroxy-2-menthene (11), and (+)-(1S,4S,6R)-1,6-dihydroxy-2-menthene (12). The structures of the new compounds 1, 2, 5-9, and 11 were defined by 1D and 2D NMR experiments, while the absolute configurations of the series of compounds were determined by comparison of the experimental vibrational circular dichroism (VCD) spectra of the 1,6-acetonide 5-acetate derived from 6 and of the 1,6-acetonide derived from 12 with their DFT-calculated spectra. In addition, Flack and Hooft X-ray parameters of 10 permitted the same conclusion. The results further led to the absolute configuration reassignment of 10 isolated from Brickellia rosmarinifolia, Mikania saltensis, Ligularia muliensis, L. sagitta, and Lindera strychnifolia, as well as of 11 from Cacalia tangutica, as ent-11.


Subject(s)
Ageratina/chemistry , Circular Dichroism/methods , Terpenes/chemistry , Asteraceae , Mexico , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...