Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Ophthalmic Physiol Opt ; 43(6): 1531-1539, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37401194

ABSTRACT

PURPOSE: Intracranial pressure increases in head-down tilt (HDT) body posture. This study evaluated the effect of HDT on the optic nerve sheath diameter (ONSD) in normal subjects. METHODS: Twenty six healthy adults (age 28 [4.7] years) participated in seated and 6° HDT visits. For each visit, subjects presented at 11:00 h for baseline seated scans and then maintained a seated or 6° HDT posture from 12:00 to 15:00 h. Three horizontal axial and three vertical axial scans were obtained at 11:00, 12:00 and 15:00 h with a 10 MHz ultrasonography probe on the same eye, randomly chosen per subject. At each time point, horizontal and vertical ONSD (mm) were quantified by averaging three measures taken 3 mm behind the globe. RESULTS: In the seated visit, ONSDs were similar across time (p > 0.05), with an overall mean (standard deviation) of 4.71 (0.48) horizontally and 5.08 (0.44) vertically. ONSD was larger vertically than horizontally at each time point (p < 0.001). In the HDT visit, ONSD was significantly enlarged from baseline at 12:00 and 15:00 h (p < 0.001 horizontal and p < 0.05 vertical). Mean (standard error) horizontal ONSD change from baseline was 0.37 (0.07) HDT versus 0.10 (0.05) seated at 12:00 h (p = 0.002) and 0.41 (0.09) HDT versus 0.12 (0.06) seated at 15:00 h (p = 0.002); mean vertical ONSD change was 0.14 (0.07) HDT versus -0.07 (0.04) seated at 12:00 h (p = 0.02) and 0.19 (0.06) HDT versus -0.03 (0.04) seated at 15:00 h (p = 0.01). ONSD change in HDT was similar between 12:00 and 15:00 h (p ≥ 0.30). Changes at 12:00 h correlated with those at 15:00 h for horizontal (r = 0.78, p < 0.001) and vertical ONSD (r = 0.73, p < 0.001). CONCLUSION: The ONSD increased when body posture transitioned from seated to HDT position without any further change at the end of the 3 h in HDT.


Subject(s)
Head-Down Tilt , Optic Nerve , Adult , Humans , Head-Down Tilt/physiology , Healthy Volunteers , Ultrasonography , Optic Nerve/diagnostic imaging , Optic Nerve/physiology
4.
Invest Ophthalmol Vis Sci ; 64(3): 32, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36988950

ABSTRACT

Purpose: Spaceflight-associated neuro-ocular syndrome (SANS) shares several clinical features with idiopathic intracranial-hypertension (IIH), namely disc edema, globe-flattening, hyperopia, and choroidal folds. Globe-flattening is caused by increased intracranial pressure (ICP) in IIH, but the cause in SANS is uncertain. If increased ICP alone causes SANS, then the ocular deformations should be similar to IIH; if not, alternative mechanisms would be implicated. Methods: Using optical coherence tomography (OCT) axial images of the optic nerve head, we compared "pre to post" ocular deformations in 22 patients with IIH to 25 crewmembers with SANS. We used two metrics to assess ocular deformations: displacements of Bruch's membrane opening (BMO-displacements) and Geometric Morphometrics to analyze peripapillary shape changes of Bruch's membrane layer (BML-shape). Results: We found a large disparity in the mean retinal nerve-fiber layer thickness between SANS (108 um; 95% confidence interval [CI] = 105-111 um) and IIH (300 um; 95% CI = 251-350.1 um). The pattern of BML-shape and BMO-displacements in SANS were significantly different from IIH (P < 0.0001). Deformations in IIH were large and preponderantly anterior, whereas the deformations in SANS were small and bidirectional. The degree of disc edema did not explain the differences in ocular deformations. Conclusions: This study showed substantial differences in the degree of disc edema and the pattern of ocular deformations between IIH and SANS. The precise cause for these differences is unknown but suggests that there may be fundamental differences in the underlying biomechanics of each consistent with the prevailing hypothesis that SANS is consequent to multiple factors beyond ICP alone. We propose a hypothetical model to explain the differences between IIH and SANS based on the pattern of indentation loads.


Subject(s)
Intracranial Hypertension , Pseudotumor Cerebri , Humans , Pseudotumor Cerebri/etiology , Pseudotumor Cerebri/complications , Intracranial Pressure/physiology , Vision Disorders , Vision, Ocular , Tomography, Optical Coherence/methods , Intracranial Hypertension/complications
5.
JAMA Ophthalmol ; 141(2): 168-175, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36602790

ABSTRACT

Importance: The primary contributing factor for development of chorioretinal folds during spaceflight is unknown. Characterizing fold types that develop and tracking their progression may provide insight into the pathophysiology of spaceflight-associated neuro-ocular syndrome and elucidate the risk of fold progression for future exploration-class missions exceeding 12 months in duration. Objective: To determine the incidence and presentation of chorioretinal folds in long-duration International Space Station crew members and objectively quantify the progression of choroidal folds during spaceflight. Design, Setting, and Participants: In this retrospective cohort study, optical coherence tomography scans of the optic nerve head and macula of crew members completing long-duration spaceflight missions were obtained on Earth prior to spaceflight and during flight. A panel of experts examined the scans for the qualitative presence of chorioretinal folds. Peripapillary total retinal thickness was calculated to identify eyes with optic disc edema, and choroidal folds were quantified based on surface roughness within macular and peripapillary regions of interest. Interventions or Exposures: Spaceflight missions ranging 6 to 12 months. Main Outcomes and Measures: Incidence of peripapillary wrinkles, retinal folds, and choroidal folds; peripapillary total retinal thickness; and Bruch membrane surface roughness. Results: A total of 36 crew members were analyzed (mean [SD] age, 46 [6] years; 7 [19%] female). Chorioretinal folds were observed in 12 of 72 eyes (17%; 6 crew members). In eyes with early signs of disc edema, 10 of 42 (24%) had choroidal folds, 4 of 42 (10%) had inner retinal folds, and 2 of 42 (5%) had peripapillary wrinkles. Choroidal folds were observed in all eyes with retinal folds and peripapillary wrinkles. Macular choroidal folds developed in 7 of 12 eyes (4 of 6 crew members) with folds and progressed with mission duration; these folds extended into the fovea in 6 eyes. Circumpapillary choroidal folds developed predominantly superior, nasal, and inferior to the optic nerve head and increased in prevalence and severity with mission duration. Conclusions and Relevance: Choroidal folds were the most common fold type to develop during spaceflight; this differs from reports in idiopathic intracranial hypertension, suggesting differences in the mechanisms underlying fold formation. Quantitative measures demonstrate the development and progression of choroidal folds during weightlessness, and these metrics may help to assess the efficacy of spaceflight-associated neuro-ocular syndrome countermeasures.


Subject(s)
Choroid Diseases , Intracranial Hypertension , Retinal Diseases , Space Flight , Humans , Female , Middle Aged , Male , Intracranial Pressure/physiology , Retrospective Studies , Incidence , Intracranial Hypertension/complications , Choroid Diseases/diagnosis , Choroid Diseases/epidemiology , Choroid Diseases/etiology , Retinal Diseases/diagnosis , Retinal Diseases/epidemiology , Retinal Diseases/etiology
6.
JAMA Ophthalmol ; 140(12): 1193-1200, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36301519

ABSTRACT

Importance: Approximately 70% of crew members who complete long-duration missions to the International Space Station develop signs of optic disc edema, a hallmark finding of spaceflight-associated neuro-ocular syndrome. The onset and magnitude of edema differ across individuals, and the reason for this variability remains unknown. Identifying risk factors for spaceflight-induced disc edema is important because this condition may become more severe during extended-duration missions to the moon and Mars and could be associated with irreversible vision loss. Objective: To assess whether preflight indicators of crowded optic nerve head morphology, other ocular measures (such as choroid thickness and axial length), body weight, body mass index, sex, age, and previous flight experience are associated with optic disc edema development. Design, Setting, and Participants: This cohort study analyzed ocular, body weight, and demographic data collected from 31 US and international crew members before, during, and after spaceflight at the NASA Johnson Space Center and International Space Station. Ocular factors assessed included preflight and in-flight peripapillary total retinal thickness, minimum rim width, optic cup volume, mean cup depth, mean cup width, cup-disc ratio, Bruch membrane opening area, retinal nerve fiber layer thickness, choroid thickness, axial length, and refractive error. In addition, body weight, body mass index, sex, age, and previous spaceflight experience were assessed for associations with optic disc edema development. The data were analyzed from August 2021 to June 2022. Exposure: Approximately 6 to 12 months of spaceflight. Main Outcomes and Measures: In-flight increases in peripapillary total retinal thickness. Linear mixed models were used to assess for associations between a wide range of risk factors and in-flight increases in peripapillary total retinal thickness, which is a sensitive objective measure for detecting optic disc edema. Results: This study included 31 International Space Station crew members with a mean (SD) age of 46.9 (6.0) years (25 men [80.6%]). During spaceflight, mean (SE) peripapillary total retinal thickness increased from 392.0 (5.8) µm to 430.2 (9.6) µm (P < .001), and greater individual changes were associated with smaller preflight cup volume (slope [SE], -62.8 [18.9]; P = .002), shallower preflight cup depth (slope [SE], -0.11 [0.03]; P < .001), and narrower preflight cup width (slope [SE], -0.03 [0.01]; P = .03). No associations were observed between changes in peripapillary total retinal thickness and any other variable evaluated. Conclusions and Relevance: Findings of this cohort study suggest that smaller optic cup morphology may be associated with optic disc edema development during spaceflight. Crew members with this cup profile may benefit from enhanced ophthalmic monitoring during spaceflight and use of countermeasures against spaceflight-associated neuro-ocular syndrome.


Subject(s)
Papilledema , Space Flight , Male , Humans , Middle Aged , Papilledema/diagnosis , Papilledema/etiology , Cohort Studies , Edema , Body Weight
8.
JAMA Ophthalmol ; 140(8): 763-770, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35708665

ABSTRACT

Importance: Countermeasures that reverse the headward fluid shift experienced in weightlessness have the potential to mitigate spaceflight-associated neuro-ocular syndrome. This study investigated whether use of the countermeasure lower-body negative pressure during spaceflight was associated with changes in ocular structure. Objective: To determine whether changes to the optic nerve head and retina during spaceflight can be mitigated by brief in-flight application of 25-mm Hg lower-body negative pressure. Design, Setting, and Participants: In the National Aeronautics and Space Administration's "Fluid Shifts Study," a prospective cohort study, optical coherence tomography scans of the optic nerve head and macula were obtained from US and international crew members before flight, in-flight, and up to 180 days after return to Earth. In-flight scans were obtained both under normal weightless conditions and 10 to 20 minutes into lower-body negative pressure exposure. Preflight and postflight data were collected in the seated, supine, and head-down tilt postures. Crew members completed 6- to 12-month missions that took place on the International Space Station. Data were analyzed from 2016 to 2021. Interventions or Exposures: Spaceflight and lower-body negative pressure. Main Outcomes and Measures: Changes in minimum rim width, optic cup volume, Bruch membrane opening height, peripapillary total retinal thickness, and macular thickness. Results: Mean (SD) flight duration for the 14 crew members (mean [SD] age, 45 [6] years; 11 male crew members [79%]) was 214 (72) days. Ocular changes on flight day 150, as compared with preflight seated, included an increase in minimum rim width (33.8 µm; 95% CI, 27.9-39.7 µm; P < .001), decrease in cup volume (0.038 mm3; 95% CI, 0.030-0.046 mm3; P < .001), posterior displacement of Bruch membrane opening (-9.0 µm; 95% CI, -15.7 to -2.2 µm; P = .009), and decrease in macular thickness (fovea to 500 µm, 5.1 µm; 95% CI, 3.5-6.8 µm; P < .001). Brief exposure to lower-body negative pressure did not affect these parameters. Conclusions and Relevance: Results of this cohort study suggest that peripapillary tissue thickening, decreased cup volume, and mild central macular thinning were associated with long-duration spaceflight. Acute exposure to 25-mm Hg lower-body negative pressure did not alter optic nerve head or retinal morphology, suggesting that longer durations of a fluid shift reversal may be needed to mitigate spaceflight-induced changes and/or other factors are involved.


Subject(s)
Optic Disk , Space Flight , Cohort Studies , Fluid Shifts/physiology , Humans , Male , Middle Aged , Prospective Studies , Retina/diagnostic imaging , Space Flight/methods
9.
Physiol Rep ; 9(15): e14977, 2021 08.
Article in English | MEDLINE | ID: mdl-34355874

ABSTRACT

Spaceflight associated neuro-ocular syndrome (SANS) is hypothesized to develop as a consequence of the chronic headward fluid shift that occurs in sustained weightlessness. We exposed healthy subjects (n = 24) to strict 6° head-down tilt bed rest (HDTBR), an analog of weightlessness that generates a sustained headward fluid shift, and we monitored for ocular changes similar to findings that develop in SANS. Two-thirds of the subjects received a daily 30-min exposure to artificial gravity (AG, 1 g at center of mass, ~0.3 g at eye level) during HDTBR by either continuous (cAG, n = 8) or intermittent (iAG, n = 8) short-arm centrifugation to investigate whether this intervention would attenuate headward fluid shift-induced ocular changes. Optical coherence tomography images were acquired to quantify changes in peripapillary total retinal thickness (TRT), retinal nerve fiber layer thickness, and choroidal thickness, and to detect chorioretinal folds. Intraocular pressure (IOP), optical biometry, and standard automated perimetry data were collected. TRT increased by 35.9 µm (95% CI, 19.9-51.9 µm, p < 0.0001), 36.5 µm (95% CI, 4.7-68.2 µm, p = 0.01), and 27.6 µm (95% CI, 8.8-46.3 µm, p = 0.0005) at HDTBR day 58 in the control, cAG, and iAG groups, respectively. Chorioretinal folds developed in six subjects across the groups, despite small increases in IOP. Visual function outcomes did not change. These findings validate strict HDTBR without elevated ambient CO2 as a model for investigating SANS and suggest that a fluid shift reversal of longer duration and/or greater magnitude at the eye may be required to prevent or mitigate SANS.


Subject(s)
Bed Rest/adverse effects , Choroid Diseases/pathology , Head-Down Tilt/adverse effects , Papilledema/pathology , Retinal Diseases/pathology , Weightlessness Simulation/adverse effects , Adult , Case-Control Studies , Choroid Diseases/etiology , Female , Humans , Male , Papilledema/etiology , Retinal Diseases/etiology
10.
Invest Ophthalmol Vis Sci ; 61(13): 21, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33186468

ABSTRACT

Purpose: The purpose of this study was to determine changes in optic nerve head (ONH) morphology in seated and 6° head-down tilt (HDT) postures over a 12-hour period. Methods: Thirty eyes of 30 healthy human subjects (15 females) were included. Composite radial and circular optical coherence tomography (OCT) scans centered on the ONH, intraocular pressure (IOP), and optic nerve sheath diameter (ONSD) were acquired every two hours from 7 a.m. to 7 p.m. for both seated (n = 30) and HDT (n = 10) sessions. Global minimum rim width (BMO-MRW), total retinal thickness (TRT), retinal nerve fiber layer thickness (RNFLT), and Bruch's membrane opening (BMO) height were quantified. Results: BMO-MRW decreased an average of 9.55 ± 8.03 µm (P < 0.01) over 12 hours in a seated position (range, -26.64 to +3.36 µm), and thinning was greater in females (-13.56 vs. -5.55 µm, P = 0.004). Modest decreases in TRT from the BMO to 500 µm (P < 0.04) and RNFLT for the 2.7, 3.5, and 4.2 mm circular scans (P < 0.02) were also observed. BMO-MRW thinning was not related to changes in IOP or ONSD (P = 0.34). In HDT, IOP and ONSD increased, BMO height moved anteriorly, and BMO-MRW thinning did not occur (P > 0.1). Conclusions: The neuroretinal rim thins throughout the day in healthy individuals, and this change cannot be explained by changes in IOP or ONSD during the same time period. A HDT posture blunts the neuroretinal rim thinning observed in a seated position, suggesting a role of the translaminar pressure difference.


Subject(s)
Head-Down Tilt , Optic Disk/anatomy & histology , Sitting Position , Adolescent , Adult , Bruch Membrane/cytology , Female , Healthy Volunteers , Humans , Intraocular Pressure/physiology , Male , Nerve Fibers , Optic Disk/diagnostic imaging , Optic Nerve/diagnostic imaging , Retinal Ganglion Cells/cytology , Time Factors , Tomography, Optical Coherence , Tonometry, Ocular , Ultrasonography , Young Adult
11.
Optom Vis Sci ; 97(9): 661-668, 2020 09.
Article in English | MEDLINE | ID: mdl-32932395

ABSTRACT

SIGNIFICANCE: Scleral lenses (SLs) are increasing in scope, and understanding their ocular health impact is imperative. The unique fit of an SL raises concern that the landing zone causes compression of conjunctival tissue that can lead to resistance of aqueous humor outflow and increased intraocular pressure (IOP). PURPOSE: This study aimed to assess changes in optic nerve head morphology as an indirect assessment of IOP and evaluate other IOP assessment methods during SL wear. METHODS: Twenty-six healthy adults wore SL on one randomly selected eye for 6 hours, whereas the fellow eye served as a control. Global minimum rim width (optical coherence tomography) and IOP (Icare, Diaton) were measured at baseline, 2 and 6 hours after SL application, and again after SL removal. Central corneal thickness, anterior chamber depth, and fluid reservoir depth were monitored. RESULTS: Minimum rim width thinning was observed in the test (-8 µm; 95% confidence interval [CI], -11 to -6 µm) and control (-6 µm; 95% CI, -9 to -3 µm) eyes after 6 hours of SL wear (P < .01), although the magnitude of thinning was not significantly greater in the lens-wearing eyes (P = .09). Mean IOP (Icare) significantly increased +2 mmHg (95% CI, +1 to +3 mmHg) in the test eyes (P = .002), with no change in the control eyes. Mean IOP changes with Diaton were +0.3 mmHg (95% CI, -0.9 to +3.2 mmHg) in the test eyes and +0.4 mmHg (95% CI, -0.8 to +1.7 mmHg) in the control eyes. However, Diaton tonometry showed poor within-subject variation and poor correlation with Icare. No clinically significant changes were observed in central corneal thickness or anterior chamber depth. CONCLUSIONS: This study suggests that SLs have a minimal effect on IOP homeostasis in the normal eye during SL wear and an insignificant impact on the optic nerve head morphology in healthy adult eyes.


Subject(s)
Contact Lenses , Intraocular Pressure/physiology , Optic Disk/pathology , Sclera , Adult , Anterior Chamber/anatomy & histology , Cornea/anatomy & histology , Female , Humans , Male , Optic Disk/diagnostic imaging , Time Factors , Tomography, Optical Coherence , Tonometry, Ocular , Young Adult
12.
Exp Eye Res ; 193: 107978, 2020 04.
Article in English | MEDLINE | ID: mdl-32081667

ABSTRACT

Optic nerve head (ONH) neuroretinal rim thickness, quantified as minimum rim width (BMO-MRW), is a sensitive measure for assessing early glaucomatous disease. The BMO-MRW is sensitive to transient fluctuations in intraocular pressure (IOP), but the time course over which BMO-MRW decreases and recovers with changes in IOP remains unknown. The goal of this study was to investigate the dynamics of BMO-MRW changes over 2-h periods of mild or moderate IOP elevation, and subsequent recovery, in healthy non-human primate eyes. Eight non-human primates were included in the study. For each animal, in two different sessions separated by at least 2 weeks, the anterior chamber IOP of one eye was maintained at either 25 mmHg or 40 mmHg for 2 h and, subsequently, at 10 mmHg for 2 h. For the duration of anterior chamber cannulation, optical coherence tomography (OCT) radial scans centered on the ONH were acquired every 5 min and used to quantify BMO-MRW. An exponential decay or rise to maximum function was used to determine the extent and rate of structural change. Additionally, Bruch's membrane opening (BMO) area, BMO height/displacement, and BMO-referenced anterior lamina cribrosa surface depth (BMO-ALCSD) were computed from radial scans. A circular scan was used to quantify retinal nerve fiber layer thickness (RNFLT) and circumpapillary choroid thickness. The primary results demonstrated that the BMO-MRW changed over an extended duration, while BMO displacement was rapid and remained stable with sustained IOP. The mean maximum predicted BMO-MRW thinning following 2 h of IOP elevation was significantly related to pressure (34.2 ± 13.8 µm for an IOP of 25 mmHg vs 40.5 ± 12.6 µm for 40 mmHg, p = 0.03). The half-life for BMO-MRW thinning was 21.9 ± 9.2 min for 25 mmHg and 20.9 ± 4.2 min for 40 mmHg, not significantly different between IOP levels (p = 0.76). Subsequently, after 2 h of IOP at 10 mmHg, all animals exhibited partial recovery of BMO-MRW with similar degrees of persistent residual thinning for the two IOP levels (21.5 ± 13.7 vs 21.0 ± 12.3 µm, p = 0.88). Similar to BMO-MRW, choroid thickness exhibited gradual thinning with IOP elevation and residual thinning following IOP reduction. However, there was no significant change in BMO area or BMO-ALCSD in either experimental session. The RNFLT gradually decreased over the duration of IOP elevation, with continued decreases following IOP reduction for the 40 mmHg session, resulting in total changes from baseline of -2.24 ± 0.81 and -2.45 ± 1.21 µm for 25 and 40 mmHg, respectively (p < 0.001). The sum of the results demonstrate that the ONH neural tissue is sensitive to changes in IOP, the effects of which are gradual over an extended time course and different for increased vs. decreased pressure. Understanding the duration over which IOP influences BMO-MRW has important implications for studies investigating the effects of IOP on the ONH. Additionally, individual variability in ONH response to IOP may improve our understanding of the risk and progression of disease.


Subject(s)
Bruch Membrane/pathology , Glaucoma, Open-Angle/physiopathology , Intraocular Pressure/physiology , Optic Disk/pathology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods , Visual Fields , Animals , Disease Models, Animal , Female , Glaucoma, Open-Angle/diagnosis , Macaca mulatta , Male , Nerve Fibers/pathology , Optic Disk/physiopathology , Reference Values
13.
Optom Vis Sci ; 96(8): 599-608, 2019 08.
Article in English | MEDLINE | ID: mdl-31318797

ABSTRACT

SIGNIFICANCE: Causes of papilledema can be life-threatening; however, distinguishing papilledema from pseudopapilledema is often challenging. The conventional optical coherence tomography (OCT) scan for assessing the optic nerve often fails to detect mild papilledema. Our study suggests that parameters derived from volumetric OCT scans can provide additional useful information for detecting papilledema. PURPOSE: Optical coherence tomography analysis of the optic nerve commonly measures retinal nerve fiber layer thickness (RNFLT) along a 1.73-mm-radius scan path. This conventional scan, however, often fails to detect mild papilledema. The purpose of this study was to evaluate additional OCT-derived measures of the optic nerve head (ONH) and peripapillary retina for differentiating papilledema (all grades and mild) from pseudopapilledema. METHODS: Cirrus OCT ONH volume scans were acquired from 21 papilledema (15 mild papilledema), 27 pseudopapilledema, and 42 control subjects. Raw scan data were exported, and total retinal thickness within Bruch's membrane opening (BMO) plus RNFLT and total retinal thickness at the following eccentricities were calculated using custom algorithms: BMO to 250, 250 to 500, 500 to 1000, and 1000 to 1500 µm. Minimum rim width was calculated, and BMO height was measured from a 4-mm Bruch's membrane reference plane centered on the BMO. RESULTS: Retinal nerve fiber layer thickness from BMO to 250 µm, minimum rim width, and BMO height had significantly greater areas under the receiver operating characteristic curve than did conventional RNFLT for differentiating mild papilledema from pseudopapilledema (P < .0001) and greater sensitivities at 95% specificity. Using cutoff values at 95% specificity, custom parameters detected 10 mild papilledema patients, and conventional RNFLT detected only 1. Bruch's membrane opening heights above the reference plane were observed in papilledema only, although many papilledema cases had a neutral or negative BMO height. CONCLUSIONS: Using OCT volumetric data, additional parameters describing peripapillary tissue thickness, neuroretinal rim thickness, and ONH position can be calculated and provide valuable measures for differentiating mild papilledema from pseudopapilledema.


Subject(s)
Eye Diseases, Hereditary/diagnosis , Nerve Fibers/pathology , Optic Nerve Diseases/diagnosis , Papilledema/diagnosis , Retinal Ganglion Cells/pathology , Adult , Bruch Membrane/pathology , Diagnosis, Differential , Female , Humans , Intraocular Pressure , Male , Middle Aged , Optic Disk/pathology , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Tomography, Optical Coherence/methods , Young Adult
14.
Horm Behav ; 58(2): 200-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20362580

ABSTRACT

Although previous research has indicated that hormone replacement therapy benefits memory in menopausal women, several recent studies have shown either detrimental or no effects of treatment. These inconsistencies emphasize the need to evaluate the role of ovarian hormones in protecting against age-related cognitive decline in an animal model. The present study investigated the effects of long-term hormone treatment during aging on the Morris water maze. Female Long Evans hooded rats were ovariectomized at middle age (12-13 months) and were immediately placed in one of five groups: no replacement, chronic 17 beta-estradiol only, chronic 17 beta-estradiol and progesterone, chronic 17 beta-estradiol and medroxyprogesterone acetate (MPA), or cyclic 17 beta-estradiol only. 17 beta-estradiol was administered in the drinking water in either a chronic or cyclic (3 out of 4 days) fashion. Progesterone and MPA were administered via subcutaneous pellets. Following 6 months of hormone treatment, animals were tested on the Morris water maze. Animals performed four trials a day for 4 days and after the final day of testing a subset of animals completed a probe trial. Across 4 days of testing, rats receiving 17 beta-estradiol in combination with MPA performed significantly worse than all other groups receiving hormone replacement. In addition on the last day of testing, chronic 17 beta-estradiol administration was more beneficial than cyclic administration and no replacement. Thus compared to other hormone-treated groups, long-term 17 beta-estradiol treatment in combination with MPA results in impaired performance on the spatial Morris water maze.


Subject(s)
Estradiol/pharmacology , Estrogen Replacement Therapy , Hormones/pharmacology , Maze Learning/drug effects , Medroxyprogesterone Acetate/pharmacology , Progesterone/pharmacology , Aging , Animals , Body Weight/drug effects , Estradiol/administration & dosage , Estrogens/administration & dosage , Estrogens/pharmacology , Female , Hormones/administration & dosage , Medroxyprogesterone Acetate/administration & dosage , Models, Animal , Neuropsychological Tests , Organ Size , Ovariectomy , Periodicity , Progesterone/administration & dosage , Random Allocation , Rats , Rats, Long-Evans , Time Factors , Uterus/drug effects , Uterus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...