Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(27): eabn4479, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857456

ABSTRACT

A bulk crystal of cadmium arsenide is a three-dimensional Dirac semimetal, but, in a thin film, it can behave like a three-dimensional topological insulator. This tunability provides unique opportunities to manipulate and explore a topological insulator phase. However, an obstacle to engineering such tunability is the subtlety of transport-based discriminants for topological phases. In this work, the quantum capacitance of cadmium arsenide-based heterostructures provides two direct experimental signatures of three-dimensional topological insulator physics: an insulating three-dimensional bulk and a Landau level at zero energy that does not disperse in a magnetic field. We proceed to join our ability to see these fingerprints of the topological surface states with flexibility afforded by our epitaxial heterostructures to demonstrate a route toward controlling the energy of the Dirac nodes on each surface. These results point to new avenues for engineering topological insulators based on cadmium arsenide.

2.
ACS Appl Mater Interfaces ; 11(47): 44451-44457, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31689078

ABSTRACT

Lead sulfide nanoparticles (PbS NPs) are used in the short-wavelength infrared photodetectors because of their excellent photosensitivity, band gap tunability, and solution processability. It has been a challenge to synthesize high-quality PbS NPs with an absorption peak beyond 2000 nm. In this work, using PbS seed crystals with an absorption peak at 1960 nm, we report a successful synthesis of very large monodispersed PbS NPs having a diameter up to 16 nm by multiple injections. The resulting NPs have an absorption peak over 2500 nm with a small full width at half-maximum of 24 meV. To demonstrate the applications of such large quantum dots (QDs), broadband heterojunction photodetectors are fabricated with the large PbS QDs of an absorption peak at 2100 nm. The resulting devices have an external quantum efficiency (EQE) of 25% (over 50% internal quantum efficiency) at 2100 nm corresponding to a responsivity of 0.385 A/W and an EQE of ∼60% in the visible range.

SELECTION OF CITATIONS
SEARCH DETAIL
...