Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Form Res ; 6(11): e35447, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36350687

ABSTRACT

BACKGROUND: Fitness technologies such as wearables and sit-stand desks are increasingly being used to fight sedentary lifestyles by encouraging physical activity. However, adherence to such technologies decreases over time because of apathy and increased dismissal of behavioral nudges. OBJECTIVE: To address this problem, we introduced shared autonomy in the context of sit-stand desks, where user input is integrated with robot autonomy to control the desk and reduce sedentary behavior and investigated user reactions and preferences for levels of automation with a sit-stand desk. As demographics affect user acceptance of robotic technology, we also studied how perceptions of nonvolitional behavior change differ across cultures (United States and India), sex, familiarity, dispositional factors, and health priming messages. METHODS: We conducted a web-based vignette study in the United States and India where a total of 279 participants watched video vignettes of a person interacting with sit-stand desks of various levels of automation and answered questions about their perceptions of the desks such as ranking of the different levels of automation. RESULTS: Participants generally preferred either manual or semiautonomous desks over the fully autonomous option (P<.001). However, participants in India were generally more amenable to the idea of nonvolitional interventions from the desk than participants in the United States (P<.001). Male participants had a stronger desire for having control over the desk than female participants (P=.01). Participants who were more familiar with sit-stand desks were more likely to adopt autonomous sit-stand desks (P=.001). No effects of health priming messages were observed. We estimated the projected health outcome by combining ranking data and hazard ratios from previous work and found that the semiautonomous desk led to the highest projected health outcome. CONCLUSIONS: These results suggest that the shared autonomy desk is the optimal level of automation in terms of both user preferences and estimated projected health outcomes. Demographics such as culture and sex had significant effects on how receptive users were to autonomous intervention. As familiarity improves the likelihood of adoption, we propose a gradual behavior change intervention to increase acceptance and adherence, especially for populations with a high desire for control.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7465-7469, 2021 11.
Article in English | MEDLINE | ID: mdl-34892820

ABSTRACT

Prior work demonstrated the potential of using the Linear Predictive Coding (LPC) filter to approximate muscle stiffness and damping from computer mouse movements to predict acute stress levels of users. Theoretically, muscle stiffness and damping in the arm can be estimated using a mass-spring-damper (MSD) biomechanical model. However, the damping frequency (i.e., stiffness) and damping ratio values derived using LPC were not yet compared with those from a theoretical MSD model. This work demonstrates that the damping frequency and damping ratio from LPC are significantly correlated with those from an MSD model, thus confirming the validity of using LPC to infer muscle stiffness and damping. We also compare the stress level binary classification performance using the values from LPC and MSD with each other and with neural network-based baselines. We found comparable performance across all conditions demonstrating LPC and MSD model-based stress prediction efficacy, especially for longer mouse trajectories.Clinical relevance- This work demonstrates the validity of the LPC filter to approximate muscle stiffness and damping and predict acute stress from computer mouse movements.


Subject(s)
Models, Theoretical , Movement , Computers
3.
Sci Rep ; 11(1): 20646, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667184

ABSTRACT

In-car passive stress sensing could enable the monitoring of stress biomarkers while driving and reach millions of commuters daily (i.e., 123 million daily commuters in the US alone). Here, we present a nonintrusive method to detect stress solely from steering angle data of a regular car. The method uses inverse filtering to convert angular movement data into a biomechanical Mass Spring Damper model of the arm and extracts its damped natural frequency as an approximation of muscle stiffness, which in turn reflects stress. We ran a within-subject study (N = 22), in which commuters drove a vehicle around a closed circuit in both stress and calm conditions. As hypothesized, cohort analysis revealed a significantly higher damped natural frequency for the stress condition (P = .023, d = 0.723). Subsequent automation of the method achieved rapid (i.e., within 8 turns) stress detection in the individual with a detection accuracy of 77%.

SELECTION OF CITATIONS
SEARCH DETAIL
...