Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(5): 4287-4296, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38259041

ABSTRACT

The reversible formation of hydrogen bonds is a ubiquitous mechanism for controlling molecular assembly in biological systems. However, achieving predictable reversibility in artificial two-dimensional (2D) materials remains a significant challenge. Here, we use an external electric field (EEF) at the solid/liquid interface to trigger the switching of H-bond-linked 2D networks using a scanning tunneling microscope. Assisted by density functional theory and molecular dynamics simulations, we systematically vary the molecule-to-molecule interactions, i.e., the hydrogen-bonding strength, as well as the molecule-to-substrate interactions to analyze the EEF switching effect. By tuning the building block's hydrogen-bonding ability (carboxylic acids vs aldehydes) and substrate nature and charge (graphite, graphene/Cu, graphene/SiO2), we induce or freeze the switching properties and control the final polymorphic output in the 2D network. Our results indicate that the switching ability is not inherent to any particular building block but instead relies on a synergistic combination of the relative adsorbate/adsorbate and absorbate/substrate energetic contributions under surface polarization. Furthermore, we describe the dynamics of the switching mechanism based on the rotation of carboxylic groups and proton exchange, which generate the polarizable species that are influenced by the EEF. This work provides insights into the design and control of reversible molecular assembly in 2D materials, with potential applications in a wide range of fields, including sensors and electronics.

2.
Phys Chem Chem Phys ; 23(17): 10225-10235, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33881024

ABSTRACT

The reactions of O2 with S vacancy sites within a MoS2 monolayer were investigated using density functional theory calculations. We considered the following defects: single S vacancy, double S vacancy, two adjacent S vacancies and two S vacancies separated by a sulphur atom. We found that the surface distribution of S vacancy sites plays a key role in determining the surface reactivity towards O2. We observed the desorption of SO2 only for the last vacancy distribution. For the other cases, the surface becomes passivated with very stable structures having O atoms on the original vacancy sites and in some cases an SO group in an adjacent position. The ab initio molecular dynamics simulations showed that the impingement of the O2 molecule on an S vacancy site produces a stable chemisorbed O2 molecule with an upright configuration. The surface reactions initiate after the O2 molecule switches to the lying-down configuration which favours the breakage of the O-O bond and the concurrent formation of S-O bonds. In the most reactive vacancy site configuration, the dissociation of the first O2 molecule produces an SO intermediate which finally leads to desorption of SO2 after oxygen abstraction from the other adjacent O2 molecule. The formation of a MoO3 moiety within the monolayer was also observed in the molecular dynamic simulations at higher oxidation levels.

3.
Langmuir ; 32(37): 9428-36, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27579725

ABSTRACT

The addition of the reducing agent tris(2-carboxyethyl) phosphine (TCEP) during the formation of α,ω-alkanedithiols monolayers on Au(111) using the immersion method produces the assembly of monolayers with bicoordinated molecules (both S-terminal groups bound to the surface) that have a reductive desorption potential that is more positive than for monolayers with monocoordinated molecules in a standing up configuration. We show that the use of TCEP either during formation of the monolayer or as a post treatment procedure allows the controlled formation of monolayers with bicoordinated or monocoordinated configurations. Density functional theory (DFT) calculations were performed to elucidate the role of TCEP in the formation of the bicoordinated configuration. We investigated the TCEP-dithiol interaction in ethanol solvent as well as the coadsorption of trimethylphosphine with 1,2-ethanedithiol on Au(111). The Brønsted base character of the phosphine facilitates the H exchange from the -SH groups of the dithiol to the phosphorus atom of TCEP with very low activation energy barriers, thus allowing the thiolate groups to bind to the Au(111) surface, thus yielding the bicoordinated configuration. Dithiol lifting mechanisms such as H exchange between S atoms and the formation of intra/inter layer disulfide bonds have much higher energy barriers.

SELECTION OF CITATIONS
SEARCH DETAIL
...