Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 228(5): 1347-1364, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37256346

ABSTRACT

Mixed transcortical aphasia (MTCA) is characterized by non-fluent speech and comprehension deficits coexisting with preserved repetition. MTCA may evolve to less severe variants of aphasias or even to full language recovery. Mechanistically, MCTA has traditionally been attributed to a disconnection between the spared left perisylvian language network (PSLN) responsible for preserved verbal repetition, and damaged left extrasylvian networks, which are responsible for language production and comprehension impairments. However, despite significant advances in in vivo neuroimaging, the structural and functional status of the PSLN network in MTCA and its evolution has not been investigated. Thus, the aim of the present study is to examine the status of the PSLN, both in terms of its functional activity and structural integrity, in four cases who developed acute post-stroke MTCA and progressed to different types of aphasia. For it, we conducted a neuroimaging-behavioral study performed in the chronic stage of four patients. The behavioral profile of MTCA persisted in one patient, whereas the other three patients progressed to less severe types of aphasias. Neuroimaging findings suggest that preserved verbal repetition in MTCA does not always depend on the optimal status of the PSLN and its dorsal connections. Instead, the right hemisphere or the left ventral pathway may also play a role in supporting verbal repetition. The variability in the clinical evolution of MTCA may be explained by the varying degree of PSLN alteration and individual premorbid neuroanatomical language substrates. This study offers a fresh perspective of MTCA through the lens of modern neuroscience and unveils novel insights into the neural underpinnings of repetition.


Subject(s)
Aphasia , Stroke , Humans , Magnetic Resonance Imaging , Aphasia/diagnostic imaging , Aphasia/complications , Brain/diagnostic imaging , Neuroimaging
2.
Neuroimage ; 259: 119396, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35753593

ABSTRACT

BACKGROUND: [18F]Flortaucipir (FTP) PET quantification is usually hindered by spill-in counts from off-target binding (OFF) regions. The present work aims to provide an in-depth analysis of the impact of OFF in FTP PET quantification, as well as to identify optimal partial volume correction (PVC) strategies to minimize this problem. METHODS: 309 amyloid-beta (Aß) negative cognitively normal subjects were included in the study. Additionally, 510 realistic FTP images with different levels of OFF were generated using Monte Carlo simulation (MC). Images were corrected for PVC using both a simple two-compartment and a multi-region method including OFF regions. FTP standardized uptake value ratio (SUVR) was quantified in Braak Areas (BA), the hippocampus (which was not included in Braak I/II) and different OFF regions (caudate, putamen, pallidum, thalamus, choroid plexus (ChPlex), cerebellar white matter (cerebWM), hemispheric white matter (hemisWM) and cerebrospinal fluid (CSF)) using the lower portion of the cerebellum as a reference region. The correlations between OFF and cortical SUVRs were studied both in real and in simulated PET images, with and without PVC. RESULTS: In-vivo, we found correlations between all OFF and target regions, especially strong for the hemisWM (slope>0.63, R2>0.4). All the correlations were attenuated but remained significant after applying PVC, except for the ChPlex. In MC simulations, the hemisWM and CSF were the main contributors to PVE in all BA (slopes 0.15-0.26 and 0.13-0.21 respectively). The hemisWM (slope=0.2), as well as the ChPlex (slope=0.02), influenced SUVRs in the hippocampus. The CerebWM was negatively correlated with all target regions (slope<-0.02, R2>0.8). While no other correlations between OFF and target regions were found, hemisWM was correlated with all OFF regions but the cerebWM (slopes 0.06-0.33). HemisWM correlations attenuated (slopes<0.06) when applying two-compartment PVC, but the hippocampus-ChPlex and the cerebWM correlations required more complex PVC with dedicated compartments for these regions. In-vivo, PVC removed a notably higher fraction of the correlation between OFF regions found to be affected by PVE in the simulation studies and BA (≈50%) than for OFF regions not affected by PVE (16%). CONCLUSION: HemisWM is the main driver of spill-in effects in FTP PET, affecting both target regions and the rest of OFF regions. PVC successfully reduces PVE, even when using a simple two-compartment method. Despite PVC, non-zero correlations were still observed between target and OFF regions in vivo, which suggests the existence of biological or tracer-related contributions to these correlations.


Subject(s)
Alzheimer Disease , Positron-Emission Tomography , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Carbolines , Positron-Emission Tomography/methods , tau Proteins/metabolism
3.
Med Phys ; 48(5): 2482-2493, 2021 May.
Article in English | MEDLINE | ID: mdl-33713354

ABSTRACT

PURPOSE: SimPET (www.sim-pet.org) is a free cloud-based platform for the generation of realistic brain positron emission tomography (PET) data. In this work, we introduce the key features of the platform. In addition, we validate the platform by performing a comparison between simulated healthy brain FDG-PET images and real healthy subject data for three commercial scanners (GE Advance NXi, GE Discovery ST, and Siemens Biograph mCT). METHODS: The platform provides a graphical user interface to a set of automatic scripts taking care of the code execution for the phantom generation, simulation (SimSET), and tomographic image reconstruction (STIR). We characterize the performance using activity and attenuation maps derived from PET/CT and MRI data of 25 healthy subjects acquired with a GE Discovery ST. We then use the created maps to generate synthetic data for the GE Discovery ST, the GE Advance NXi, and the Siemens Biograph mCT. The validation was carried out by evaluating Bland-Altman differences between real and simulated images for each scanner. In addition, SPM voxel-wise comparison was performed to highlight regional differences. Examples for amyloid PET and for the generation of ground-truth pathological patients are included. RESULTS: The platform can be efficiently used for generating realistic simulated FDG-PET images in a reasonable amount of time. The validation showed small differences between SimPET and acquired FDG-PET images, with errors below 10% for 98.09% (GE Discovery ST), 95.09% (GE Advance NXi), and 91.35% (Siemens Biograph mCT) of the voxels. Nevertheless, our SPM analysis showed significant regional differences between the simulated images and real healthy patients, and thus, the use of the platform for converting control subject databases between different scanners requires further investigation. CONCLUSIONS: The presented platform can potentially allow scientists in clinical and research settings to perform MC simulation experiments without the need for high-end hardware or advanced computing knowledge and in a reasonable amount of time.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Algorithms , Brain/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Monte Carlo Method , Positron-Emission Tomography
4.
Neuroimage ; 222: 117229, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32771619

ABSTRACT

BACKGROUND: The lack of standardization of intensity normalization methods and its unknown effect on the quantification output is recognized as a major drawback for the harmonization of brain FDG-PET quantification protocols. The aim of this work is the ground truth-based evaluation of different intensity normalization methods on brain FDG-PET quantification output. METHODS: Realistic FDG-PET images were generated using Monte Carlo simulation from activity and attenuation maps directly derived from 25 healthy subjects (adding theoretical relative hypometabolisms on 6 regions of interest and for 5 hypometabolism levels). Single-subject statistical parametric mapping (SPM) was applied to compare each simulated FDG-PET image with a healthy database after intensity normalization based on reference regions methods such as the brain stem (RRBS), cerebellum (RRC) and the temporal lobe contralateral to the lesion (RRTL), and data-driven methods, such as proportional scaling (PS), histogram-based method (HN) and iterative versions of both methods (iPS and iHN). The performance of these methods was evaluated in terms of the recovery of the introduced theoretical hypometabolic pattern and the appearance of unspecific hypometabolic and hypermetabolic findings. RESULTS: Detected hypometabolic patterns had significantly lower volumes than the introduced hypometabolisms for all intensity normalization methods particularly for slighter reductions in metabolism . Among the intensity normalization methods, RRC and HN provided the largest recovered hypometabolic volumes, while the RRBS showed the smallest recovery. In general, data-driven methods overcame reference regions and among them, the iterative methods overcame the non-iterative ones. Unspecific hypermetabolic volumes were similar for all methods, with the exception of PS, where it became a major limitation (up to 250 cm3) for extended and intense hypometabolism. On the other hand, unspecific hypometabolism was similar far all methods, and usually solved with appropriate clustering. CONCLUSIONS: Our findings showed that the inappropriate use of intensity normalization methods can provide remarkable bias in the detected hypometabolism and it represents a serious concern in terms of false positives. Based on our findings, we recommend the use of histogram-based intensity normalization methods. Reference region methods performance was equivalent to data-driven methods only when the selected reference region is large and stable.


Subject(s)
Brain Mapping , Brain/pathology , Image Processing, Computer-Assisted , Positron-Emission Tomography , Aged , Brain Mapping/methods , Computer Simulation , Female , Fluorodeoxyglucose F18/metabolism , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Temporal Lobe/pathology
5.
Front Psychol ; 10: 678, 2019.
Article in English | MEDLINE | ID: mdl-31133908

ABSTRACT

Linguistic anxiety (LA) is an abnormal stress response induced by situations that require the use of verbal behavior, and it is accentuated during language testing in persons with aphasia (PWA). The presence of LA in PWA may jeopardize the interpretation of cognitive evaluations, leading to biased conclusions about the severity of the language alteration and the effectiveness of the treatments. In the present study, we report the case of a woman (Mrs. A) with severe chronic mixed transcortical aphasia due to left frontal and parietal hemorrhages that partially spared the perisylvian area. Mrs. A was treated with the dopamine agonist Rotigotine alone and combined with Intensive Language-Action Therapy (ILAT). Complementary evaluations included autonomic reactivity during the performance of different language tasks, resting state functional magnetic resonance imaging (rs-fMRI) and [18F]-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). We found that formal language testing in a clinical setting triggered a dramatic increase of automatic echolalia, perseverations and frustration, making the task completion difficult. The treatment improved aphasia, but gains were more robust when evaluation was performed by Mrs. A's husband at home than by clinicians. Autonomic evaluation under Rotigotine revealed higher reactivity during tasks tapping an impaired function in comparison with a task evaluating a preserved function (verbal repetition). Baseline 18F-FDG-PET analysis showed decreased metabolic activity in left limbic-paralimbic areas, whereas rs-fMRI revealed compensatory activity in the right hemisphere. We also analyzed the different factors (e.g., premorbid personality traits, task difficulty) that may have contributed to LA in Mrs. A during language testing. Our findings emphasize the usefulness of implicating adequately trained laypersons in the evaluation and treatment of PWA showing LA. Further studies using multidimensional evaluations are needed to disentangle the interplay between anxiety and abnormal language as well as the neural mechanisms underpinning LA in PWA.

6.
Brain Lang ; 190: 16-30, 2019 03.
Article in English | MEDLINE | ID: mdl-30665003

ABSTRACT

Repetitive verbal behaviors such as conduite d'approche (CdA) and mitigated echolalia (ME) are well-known phenomena since early descriptions of aphasia. Nevertheless, there is no substantial fresh knowledge on their clinical features, neural correlates and treatment interventions. In the present study we take advantage of three index cases of chronic fluent aphasia showing CdA, ME or both symptoms to dissect their clinical and neural signatures. Using multimodal neuroimaging (structural magnetic resonance imaging and [18]-fluorodeoxyglucose positron emission tomography during resting state), we found that despite of the heterogeneous lesions in terms of etiology (stroke, traumatic brain injury), volume and location, CdA was present when the lesion affected in greater extent the left dorsal language pathway, while ME resulted from preferential damage to the left ventral stream. The coexistence of CdA and ME was associated with involvement of areas overlapping with the structural lesions and metabolic derangements described in the subjects who showed one of these symptoms (CdA or ME). These findings suggest that CdA and ME represent the clinical expression of plastic changes that occur within the spared language network and its interconnected areas in order to compensate for the linguistic functions that previously relied on the activity of the damaged pathway. We discuss the results in the light of this idea and consider alternative undamaged neural networks that may support CdA and ME.


Subject(s)
Aphasia/psychology , Language , Verbal Behavior , Aphasia/diagnostic imaging , Aphasia/etiology , Brain/diagnostic imaging , Brain/pathology , Cognition , Female , Fluorodeoxyglucose F18 , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Organ Size , Positron-Emission Tomography/methods , Radiopharmaceuticals , Rest/psychology
7.
Neuroinformatics ; 17(1): 103-114, 2019 01.
Article in English | MEDLINE | ID: mdl-29956130

ABSTRACT

Kinetic modeling is at the basis of most quantification methods for dynamic PET data. Specific software is required for it, and a free and easy-to-use kinetic analysis toolbox can facilitate routine work for clinical research. The relevance of kinetic modeling for neuroimaging encourages its incorporation into image processing pipelines like those of SPM, also providing preprocessing flexibility to match the needs of users. The aim of this work was to develop such a toolbox: QModeling. It implements four widely-used reference-region models: Simplified Reference Tissue Model (SRTM), Simplified Reference Tissue Model 2 (SRTM2), Patlak Reference and Logan Reference. A preliminary validation was also performed: The obtained parameters were compared with the gold standard provided by PMOD, the most commonly-used software in this field. Execution speed was also compared, for time-activity curve (TAC) estimation, model fitting and image generation. QModeling has a simple interface, which guides the user through the analysis: Loading data, obtaining TACs, preprocessing the model for pre-evaluation, generating parametric images and visualizing them. Relative differences between QModeling and PMOD in the parameter values are almost always below 10-8. The SRTM2 algorithm yields relative differences from 10-3 to 10-5 when [Formula: see text] is not fixed, since different, validated methods are used to fit this parameter. The new toolbox works efficiently, with execution times of the same order as those of PMOD. Therefore, QModeling allows applying reference-region models with reliable results in efficient computation times. It is free, flexible, multiplatform, easy-to-use and open-source, and it can be easily expanded with new models.


Subject(s)
Computer Simulation , Image Processing, Computer-Assisted/methods , Neuroimaging/methods , Positron-Emission Tomography/methods , Algorithms , Humans , Kinetics
8.
Front Hum Neurosci ; 11: 304, 2017.
Article in English | MEDLINE | ID: mdl-28659776

ABSTRACT

Donepezil (DP), a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014). Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia). A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day) which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy) during 8 weeks (Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR) during 3 months (Endpoint 2). Language evaluations, diffusion weighted imaging (DWI), and voxel-based morphometry (VBM) were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these tracts. In conclusion, cholinergic potentiation alone and combined with a model-based aphasia therapy improved language deficits by promoting structural plastic changes in right white matter tracts.

9.
Front Hum Neurosci ; 10: 399, 2016.
Article in English | MEDLINE | ID: mdl-27555813

ABSTRACT

Foreign accent syndrome (FAS) is a speech disorder that is defined by the emergence of a peculiar manner of articulation and intonation which is perceived as foreign. In most cases of acquired FAS (AFAS) the new accent is secondary to small focal lesions involving components of the bilaterally distributed neural network for speech production. In the past few years FAS has also been described in different psychiatric conditions (conversion disorder, bipolar disorder, and schizophrenia) as well as in developmental disorders (specific language impairment, apraxia of speech). In the present study, two adult males, one with atypical phonetic production and the other one with cluttering, reported having developmental FAS (DFAS) since their adolescence. Perceptual analysis by naïve judges could not confirm the presence of foreign accent, possibly due to the mildness of the speech disorder. However, detailed linguistic analysis provided evidence of prosodic and segmental errors previously reported in AFAS cases. Cognitive testing showed reduced communication in activities of daily living and mild deficits related to psychiatric disorders. Psychiatric evaluation revealed long-lasting internalizing disorders (neuroticism, anxiety, obsessive-compulsive disorder, social phobia, depression, alexithymia, hopelessness, and apathy) in both subjects. Diffusion tensor imaging (DTI) data from each subject with DFAS were compared with data from a group of 21 age- and gender-matched healthy control subjects. Diffusion parameters (MD, AD, and RD) in predefined regions of interest showed changes of white matter microstructure in regions previously related with AFAS and psychiatric disorders. In conclusion, the present findings militate against the possibility that these two subjects have FAS of psychogenic origin. Rather, our findings provide evidence that mild DFAS occurring in the context of subtle, yet persistent, developmental speech disorders may be associated with structural brain anomalies. We suggest that the simultaneous involvement of speech and emotion regulation networks might result from disrupted neural organization during development, or compensatory or maladaptive plasticity. Future studies are required to examine whether the interplay between biological trait-like diathesis (shyness, neuroticism) and the stressful experience of living with mild DFAS lead to the development of internalizing psychiatric disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...