Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(26)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33524955

ABSTRACT

In this article, the synthesis of phase pure iron pyrite nanocubes (FeS2NCs) and their various effects on the charge carrier dynamics and photovoltaic performances of P3HT:PC71BM based hybrid bulk-heterojunction solar cells have been studied. The optimum doping concentration of FeS2NCs was found to be 0.3 wt%. For the optimally doped devices, the short-circuit current density was found to have improved from 5.47 to 7.99 mA cm-2leading to an overall cell efficiency improvement from 2.10% to 3.22% as compared to the undoped reference devices. The enhancement in photovoltaic performance is mainly attributed to the formation of localized energy states near the band edges leading to higher carrier generation rate by 72% whereas carrier dissociation probability is also increased by 13%. Urbach energy estimation reveals that the optimally doped devices have achieved a relatively balanced amount of localized states resulting in reduced non-radiative recombination. Such localized defect states formation with FeS2NCs doping was also found to have significant influence over the charge carrier dynamics of the active layer. Transient photocurrent and photovoltage studies revealed that FeS2NCs assist in faster carrier extraction by reducing the transport time from 1.4 to 0.6µs and by enhancing carrier recombination time from 51.7 to 78.9µs for the reference and optimum devices respectively. Such an unorthodox approach of defect state assisted efficiency improvement demonstrates the importance of simultaneously understanding the charge carrier dynamics and photovoltaic performance for rational device optimization, and opens new prospects for developing high-efficiency solution processable hybrid devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...