Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Immunol Res ; 11(9): 1168-1183, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37307577

ABSTRACT

Exercise changes the tumor microenvironment by remodeling blood vessels and increasing infiltration by cytotoxic immune cells. The mechanisms driving these changes remain unclear. Herein, we demonstrate that exercise normalizes tumor vasculature and upregulates endothelial expression of VCAM1 in YUMMER 1.7 and B16F10 murine models of melanoma but differentially regulates tumor growth, hypoxia, and the immune response. We found that exercise suppressed tumor growth and increased CD8+ T-cell infiltration in YUMMER but not in B16F10 tumors. Single-cell RNA sequencing and flow cytometry revealed exercise modulated the number and phenotype of tumor-infiltrating CD8+ T cells and myeloid cells. Specifically, exercise caused a phenotypic shift in the tumor-associated macrophage population and increased the expression of MHC class II transcripts. We further demonstrated that ERK5 S496A knock-in mice, which are phosphorylation deficient at the S496 residue, "mimicked" the exercise effect when unexercised, yet when exercised, these mice displayed a reversal in the effect of exercise on tumor growth and macrophage polarization compared with wild-type mice. Taken together, our results reveal tumor-specific differences in the immune response to exercise and show that ERK5 signaling via the S496 residue plays a crucial role in exercise-induced tumor microenvironment changes. See related Spotlight by Betof Warner, p. 1158.


Subject(s)
Melanoma , Mitogen-Activated Protein Kinase 7 , Animals , Mice , CD8-Positive T-Lymphocytes , Melanoma/genetics , Phenotype , Phosphorylation , Tumor Microenvironment
2.
Cancers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077841

ABSTRACT

Ceramides are essential sphingolipids that mediate cell death and survival. Low ceramide content in melanoma is one mechanism of drug resistance. Thus, increasing the ceramide content in tumor cells is likely to increase their sensitivity to cytotoxic therapy. Aerobic exercise has been shown to modulate ceramide metabolism in healthy tissue, but the relationship between exercise and ceramide in tumors has not been evaluated. Here, we demonstrate that aerobic exercise causes tumor cell apoptosis and accumulation of pro-apoptotic ceramides in B16F10 but not BP melanoma models using mice. B16F10 tumor-bearing mice were treated with two weeks of moderate treadmill exercise, or were control, unexercised mice. A reverse-phase protein array was used to identify canonical p53 apoptotic signaling as a key pathway upregulated by exercise, and we demonstrate increased apoptosis in tumors from exercised mice. Consistent with this finding, pro-apoptotic C16-ceramide, and the ceramide generating enzyme ceramide synthase 6 (CerS6), were higher in B16F10 tumors from exercised mice, while pro-survival sphingosine kinase 1 (Sphk1) was lower. These data suggest that exercise contributes to B16F10 tumor cell death, possibly by modulating ceramide metabolism toward a pro-apoptotic ceramide/sphingosine-1-phosphate balance. However, these results are not consistent in BP tumors, demonstrating that exercise can have different effects on tumors of different patient or mouse origin with the same diagnosis. This work indicates that exercise might be most effective as a therapeutic adjuvant with therapies that kill tumor cells in a ceramide-dependent manner.

3.
Cancer Cell ; 40(7): 720-737.e5, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35660135

ABSTRACT

Aerobic exercise is associated with decreased cancer incidence and cancer-associated mortality. However, little is known about the effects of exercise on pancreatic ductal adenocarcinoma (PDA), a disease for which current therapeutic options are limited. Herein, we show that aerobic exercise reduces PDA tumor growth, by modulating systemic and intra-tumoral immunity. Mechanistically, exercise promotes immune mobilization and accumulation of tumor-infiltrating IL15Rα+ CD8 T cells, which are responsible for the tumor-protective effects. In clinical samples, an exercise-dependent increase of intra-tumoral CD8 T cells is also observed. Underscoring the translational potential of the interleukin (IL)-15/IL-15Rα axis, IL-15 super-agonist (NIZ985) treatment attenuates tumor growth, prolongs survival, and enhances sensitivity to chemotherapy. Finally, exercise or NIZ985 both sensitize pancreatic tumors to αPD-1, with improved anti-tumor and survival benefits. Collectively, our findings highlight the therapeutic potential of an exercise-oncology axis and identify IL-15 activation as a promising treatment strategy for this deadly disease.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Receptors, Interleukin-15/metabolism , Antineoplastic Agents/pharmacology , CD8-Positive T-Lymphocytes , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Humans , Immunotherapy , Interleukin-15/metabolism , Interleukin-15/pharmacology , Interleukin-15/therapeutic use , Pancreatic Neoplasms/drug therapy , Tumor Microenvironment , Pancreatic Neoplasms
4.
Front Immunol ; 13: 893659, 2022.
Article in English | MEDLINE | ID: mdl-35720391

ABSTRACT

Allogeneic stem cell transplantation is a curative immunotherapy where patients receive myeloablative chemotherapy and/or radiotherapy, followed by donor stem cell transplantation. Graft versus host disease (GVHD) is a major complication caused by dysregulated donor immune system, thus a novel strategy to modulate donor immunity is needed to mitigate GVHD. Tissue damage by conditioning regimen is thought to initiate the inflammatory milieu that recruits various donor immune cells for cross-priming of donor T cells against alloantigen and eventually promote strong Th1 cytokine storm escalating further tissue damage. Bilirubin nanoparticles (BRNP) are water-soluble conjugated of bilirubin and polyethylene glycol (PEG) with potent anti-inflammatory properties through its ability to scavenge reactive oxygen species generated at the site of inflammation. Here, we evaluated whether BRNP treatment post-transplantation can reduce initial inflammation and subsequently prevent GVHD in a major histocompatibility (MHC) mismatched murine GVHD model. After myeloablative irradiation, BALB/c mice received bone marrow and splenocytes isolated from C57BL/6 mice, with or without BRNP (10 mg/kg) daily on days 0 through 4 post-transplantation, and clinical GVHD and survival was monitored for 90 days. First, BRNP treatment significantly improved clinical GVHD score compared to untreated mice (3.4 vs 0.3, p=0.0003), and this translated into better overall survival (HR 0.0638, p=0.0003). Further, BRNPs showed a preferential accumulation in GVHD target organs leading to a reduced systemic and local inflammation evidenced by lower pathologic GVHD severity as well as circulating inflammatory cytokines such as IFN-γ. Lastly, BRNP treatment post-transplantation facilitated the reconstitution of CD4+ iNK T cells and reduced expansion of proinflammatory CD8α+ iNK T cells and neutrophils especially in GVHD organs. Lastly, BRNP treatment decreased ICOS+ or CTLA-4+ T cells but not PD-1+ T cells suggesting a decreased level of T cell activation but maintaining T cell tolerance. In conclusion, we demonstrated that BRNP treatment post-transplantation ameliorates murine GVHD via diminishing the initial tissue damage and subsequent inflammatory responses from immune subsets.


Subject(s)
Graft vs Host Disease , Nanoparticles , Animals , Bilirubin , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Humans , Immunotherapy/adverse effects , Inflammation/complications , Mice , Mice, Inbred C57BL , Transplantation, Homologous/adverse effects
6.
Methods Mol Biol ; 2346: 35-50, 2021.
Article in English | MEDLINE | ID: mdl-32529600

ABSTRACT

Hematopoietic stem cells (HSCs) are used in the clinic to provide life-saving therapies to patients with a variety of hematological malignancies and disorders. Yet, serious deficiencies in our understanding of how HSCs develop and self-renew continue to limit our ability to make this therapy safer and more broadly available to those who have no available donor. Finding ways to expand HSCs and develop alternate sources of HSCs is an urgent priority. In the embryo, a critical transition in development of the blood system requires that newly emergent HSCs from the aorta-gonad-mesonephros (AGM) region migrate to the fetal liver where they aggressively self-renew and expand to numbers sufficient to sustain the adult long term. This process of homing to the fetal liver is orchestrated by intrinsic regulators such as epigenetic modifications to the genome, expression of transcription factors, and adhesion molecule presentation, as well as sensing of extrinsic factors like chemokines, cytokines, and other molecules. Due to technical limitations in manipulating the fetal tissue microenvironment, mechanisms mediating the homing and expansion process remain incompletely understood. Importantly, HSC development is strictly dependent upon forces created by the flow of blood, and current experimental methods make the study of biophysical cues especially challenging. In the protocol presented herein, we address these limitations by designing a biomimetic ex vivo microfluidic model of the fetal liver that enables monitoring of HSC homing to and interaction with fetal liver niches under flow and matrix elasticity conditions typical during embryonic development. This model can be easily customized for the study of key microenvironmental factors and biophysical cues that support HSC homing and expansion.


Subject(s)
Hematopoietic Stem Cells/metabolism , Liver/metabolism , Models, Biological , Animals , Hematopoietic Stem Cells/cytology , Liver/cytology , Liver/embryology , Mice
7.
Front Immunol ; 11: 567406, 2020.
Article in English | MEDLINE | ID: mdl-33329531

ABSTRACT

Invariant natural killer T (iNKT) cells are innate-like T lymphocytes cells that recognize glycolipid antigens associated with CD1d, non-classical antigen presenting proteins. They can drive either pro-inflammatory (Th-1) or anti-inflammatory (Th-2) immune microenvironment through the production of both Th-1 and Th-2 type cytokines upon activation, thus play a vital role in cancer, infection, and autoimmune diseases. Adoptive cell therapy using ex vivo expanded iNKT cells is a promising approach to enhance anti-tumor immunity or immunosuppression. However, overcoming phenotypic and functional heterogeneity and promoting in vivo persistency of iNKT cells remains to be a challenge. Here, we compared various methods for ex vivo expansion of human iNKT cells and assessed the quality of expansion, phenotype, and cytokine production profile of expanded iNKT cells. While a direct stimulation of iNKT cells in peripheral blood mononuclear cells with agonist glycolipid led to the expansion of iNKT cells in varying degrees, stimulation of enriched iNKT cells by irradiated autologous peripheral blood mononuclear cells or allogeneic dendritic cells resulted in consistent expansion of highly pure iNKT cells. Interestingly, the mode of antigenic stimulation influenced the dominant subtype of expanded iNKT cells. Further, we evaluated whether additional IL-7 or IL-15 during antigenic stimulation with allogeneic dendritic cells can improve the phenotypic heterogeneity and modify cytokine production profile of iNKT cells expanded from 18 consecutive donors. The presence of IL-7 or IL-15 during antigenic stimulation did not affect the fold of expansion or purity of expanded iNKT cells. However, IL-7, but not IL-15, led to a better expansion of CD4+ iNKT cells, enhanced Th-2 type cytokine production of CD4+ iNKT cells, and maintained the expansion of central memory (CD45RA-CD62L+) CD4+ iNKT cells. Our results suggest the addition of IL-7 during antigenic stimulation with allogeneic dendritic cells can promote the expansion of CD62L+Th-2+CD4+ human iNKT cells that can be used as novel immunotherapeutic to control excessive inflammation to treat various autoimmune diseases.


Subject(s)
Allogeneic Cells , Cytokines/biosynthesis , Dendritic Cells/immunology , Dendritic Cells/metabolism , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/radiation effects , Antigens/immunology , Biomarkers , Humans , Immunologic Memory , Immunophenotyping , Interleukin-7/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
8.
Front Immunol ; 9: 3153, 2018.
Article in English | MEDLINE | ID: mdl-30713535

ABSTRACT

Despite substantial advances in the treatment of acute myeloid leukemia (AML), only 30% of patients survive more than 5 years. Therefore, new therapeutics are much needed. Here, we present a novel therapeutic strategy targeting PR1, an HLA-A2 restricted myeloid leukemia antigen. Previously, we have developed and characterized a novel T-cell receptor-like monoclonal antibody (8F4) that targets PR1/HLA-A2 and eliminates AML xenografts by antibody-dependent cellular cytotoxicity (ADCC). To improve the potency of 8F4, we adopted a strategy to link T-cell cytotoxicity with a bi-specific T-cell-engaging antibody that binds PR1/HLA-A2 on leukemia and CD3 on neighboring T-cells. The 8F4 bi-specific antibody maintained high affinity and specific binding to PR1/HLA-A2 comparable to parent 8F4 antibody, shown by flow cytometry and Bio-Layer Interferometry. In addition, 8F4 bi-specific antibody activated donor T-cells in the presence of HLA-A2+ primary AML blasts and cell lines in a dose dependent manner. Importantly, activated T-cells lysed HLA-A2+ primary AML blasts and cell lines after addition of 8F4 bi-specific antibody. In conclusion, our studies demonstrate the therapeutic potential of a novel bi-specific antibody targeting the PR1/HLA-A2 leukemia-associated antigen, justifying further clinical development of this strategy.


Subject(s)
Antibodies, Bispecific/immunology , Antigens, Neoplasm/immunology , HLA-A2 Antigen/immunology , Leukemia, Myeloid, Acute/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/pharmacology , Antibody Specificity/immunology , Antigens, Neoplasm/metabolism , CHO Cells , Cell Line , Cricetulus , Cytotoxicity, Immunologic , HLA-A2 Antigen/metabolism , Humans , Immunotherapy, Adoptive , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Lymphocyte Activation , Protein Binding , T-Lymphocytes/metabolism
9.
Cell Calcium ; 56(3): 225-34, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25113159

ABSTRACT

Hydrogen sulphide (H2S) is a newly discovered gasotransmitter that regulates multiple steps in VEGF-induced angiogenesis. An increase in intracellular Ca(2+) concentration ([Ca(2+)]i) is central to endothelial proliferation and may be triggered by both VEGF and H2S. Albeit VEGFR-2 might serve as H2S receptor, the mechanistic relationship between VEGF- and H2S-induced Ca(2+) signals in endothelial cells is unclear. The present study aimed at assessing whether and how NaHS, a widely employed H2S donor, stimulates pro-angiogenic Ca(2+) signals in Ea.hy926 cells, a suitable surrogate for mature endothelial cells, and human endothelial progenitor cells (EPCs). We found that NaHS induced a dose-dependent increase in [Ca(2+)]i in Ea.hy926 cells. NaHS-induced Ca(2+) signals in Ea.hy926 cells did not require extracellular Ca(2+) entry, while they were inhibited upon pharmacological blockade of the phospholipase C/inositol-1,4,5-trisphosphate (InsP3) signalling pathway. Moreover, the Ca(2+) response to NaHS was prevented by genistein, but not by SU5416, which selectively inhibits VEGFR-2. However, VEGF-induced Ca(2+) signals were suppressed by dl-propargylglycine (PAG), which blocks the H2S-producing enzyme, cystathionine γ-lyase. Consistent with these data, VEGF-induced proliferation and migration were inhibited by PAG in Ea.hy926 cells, albeit NaHS alone did not influence these processes. Conversely, NaHS elevated [Ca(2+)]i only in a modest fraction of circulating EPCs, whereas neither VEGF-induced Ca(2+) oscillations nor VEGF-dependent proliferation were affected by PAG. Therefore, H2S-evoked elevation in [Ca(2+)]i is essential to trigger the pro-angiogenic Ca(2+) response to VEGF in mature endothelial cells, but not in their immature progenitors.


Subject(s)
Endothelial Progenitor Cells/metabolism , Endothelium, Vascular/metabolism , Hydrogen Sulfide/pharmacology , Inositol 1,4,5-Trisphosphate/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism , Adult , Cell Proliferation/drug effects , Cells, Cultured , Cytoplasm/metabolism , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/drug effects , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Healthy Volunteers , Humans , Type C Phospholipases/metabolism , Wound Healing/drug effects , Young Adult
10.
PLoS One ; 9(3): e91099, 2014.
Article in English | MEDLINE | ID: mdl-24603752

ABSTRACT

BACKGROUND: An increase in the frequency of circulating endothelial colony forming cells (ECFCs), the only subset of endothelial progenitor cells (EPCs) truly belonging to the endothelial phenotype, occurs in patients affected by primary myelofibrosis (PMF). Herein, they might contribute to the enhanced neovascularisation of fibrotic bone marrow and spleen. Store-operated Ca2+ entry (SOCE) activated by the depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ store drives proliferation in ECFCs isolated from both healthy donors (N-ECFCs) and subjects suffering from renal cellular carcinoma (RCC-ECFCs). SOCE is up-regulated in RCC-ECFCs due to the over-expression of its underlying molecular components, namely Stim1, Orai1, and TRPC1. METHODOLOGY/PRINCIPAL FINDINGS: We utilized Ca2+ imaging, real-time polymerase chain reaction, western blot analysis and functional assays to evaluate molecular structure and the functional role of SOCE in ECFCs derived from PMF patients (PMF-ECFCs). SOCE, induced by either pharmacological (i.e. cyclopiazonic acid or CPA) or physiological (i.e. ATP) stimulation, was significantly higher in PMF-ECFCs. ATP-induced SOCE was inhibited upon blockade of the phospholipase C/InsP3 signalling pathway with U73111 and 2-APB. The higher amplitude of SOCE was associated to the over-expression of the transcripts encoding for Stim2, Orai2-3, and TRPC1. Conversely, immunoblotting revealed that Stim2 levels remained constant as compared to N-ECFCs, while Stim1, Orai1, Orai3, TRPC1 and TRPC4 proteins were over-expressed in PMF-ECFCs. ATP-induced SOCE was inhibited by BTP-2 and low micromolar La3+ and Gd3+, while CPA-elicited SOCE was insensitive to Gd3+. Finally, BTP-2 and La3+ weakly blocked PMF-ECFC proliferation, while Gd3+ was ineffective. CONCLUSIONS: Two distinct signalling pathways mediate SOCE in PMF-ECFCs; one is activated by passive store depletion and is Gd3+-resistant, while the other one is regulated by the InsP3-sensitive Ca2+ pool and is inhibited by Gd3+. Unlike N- and RCC-ECFCs, the InsP3-dependent SOCE does not drive PMF-ECFC proliferation.


Subject(s)
Calcium Channels/metabolism , Endothelial Progenitor Cells/metabolism , Membrane Proteins/metabolism , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , TRPC Cation Channels/metabolism , Adenosine Triphosphate/pharmacology , Adult , Aged , Anilides/pharmacology , Calcium/metabolism , Calcium Channels/genetics , Cell Proliferation/drug effects , Cell Separation , Colony-Forming Units Assay , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endothelial Progenitor Cells/drug effects , Female , Gadolinium/pharmacology , Humans , Indoles/pharmacology , Inositol 1,4,5-Trisphosphate/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Lanthanum/pharmacology , Male , Membrane Potentials/drug effects , Membrane Proteins/genetics , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , TRPC Cation Channels/genetics , Thiadiazoles/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...