Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(3): e14413, 2024.
Article in English | MEDLINE | ID: mdl-38924553

ABSTRACT

In recent years, there has been an increase in the study of phytomelatonin. Having numerous functions in animals, melatonin produced by plants (phytomelatonin) is also a multi-regulatory molecule with great potential in plant physiology and in mitigating abiotic stresses, such as drought, salinity, chilling, heat, chemical contamination, and UV-radiation stress. This review highlights the primary functions of phytomelatonin as an anti-stress molecule against abiotic stress. We discuss the role of phytomelatonin as a master regulator, oxidative stress manager, reactive oxygen species and reactive nitrogen species regulator, and defense compounds inducer. Although there exist a handful of reviews on the crosstalk of phytomelatonin with other signaling molecules like auxin, cytokinin, gibberellin, abscisic acid, ethylene, nitric oxide, jasmonic acid, and salicylic acid, this review looks at studies that have reported a few aspects of phytomelatonin with newly discovered signaling molecules along with classical signaling molecules with relation to abiotic stress tolerance. The research and applications of phytomelatonin with hydrogen sulfide, strigolactones, brassinosteroids, and polyamines are still in their nascent stage but hold a promising scope for the future. Additionally, this review states the recent developments in the signaling of phytomelatonin with nitrogen metabolism and nitrosative stress in plants.


Subject(s)
Homeostasis , Melatonin , Plants , Signal Transduction , Stress, Physiological , Melatonin/metabolism , Plants/metabolism , Plants/radiation effects , Plant Physiological Phenomena , Plant Growth Regulators/metabolism
2.
Food Chem ; 448: 139084, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569403

ABSTRACT

Almond protein isolate (API) obtained from almond meal was processed using dynamic high-pressure microfluidisation (0, 40, 80, 120, and 160 MPa pressure; single pass). Microfluidisation caused significant reductions in the particle size and increased absolute zeta potential. SDS-PAGE analysis indicated reduction in band intensity and the complete disappearance of bands beyond 80 MPa. Structural analysis (by circular dichroism, UV-Vis, and intrinsic-fluorescence spectra) of the API revealed disaggregation (up to 80 MPa) and then re-aggregation beyond 80 MPa. Significant increments in protein digestibility (1.16-fold) and the protein digestibility corrected amino acid score (PDCAAS; 1.15-fold) were observed for the API (80 MPa) than control. Furthermore, significant improvements (P < 0.05) in the functional properties were observed, viz., the antioxidant activity, protein solubility, and emulsifying properties. Overall, the results revealed that moderate microfluidisation treatment (80 MPa) is an effective and sustainable technique for enhancing physico-chemical and functional attributes of API, thus potentially enabling its functional food/nutraceuticals application.


Subject(s)
Food Handling , Particle Size , Plant Proteins , Pressure , Prunus dulcis , Solubility , Prunus dulcis/chemistry , Plant Proteins/chemistry , Antioxidants/chemistry
3.
J Food Sci Technol ; 61(6): 1157-1164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38562599

ABSTRACT

The study aimed to optimize ultrasonic (US: 40 kHz/200 W for 10, 20, 30, 40, and 50 min), and microwave (MW: 160 W for 45, 90, 125, 180, and 225 s) pretreatment conditions on protein extraction yield and degree of protein hydrolysis (DH) from almond de-oiled meal, an industrial by-product. First order model was used to describe the kinetics of almond protein hydrolysates obtained with Alcalase. The highest DH, 10.95% was recorded for the US-50 min and 8.87% for MW-45 s; while it was 5.76% for the untreated/control sample. At these optimized pretreatment conditions, a 1.16- and 1.18-fold increment in protein recovery was observed for the US and MW pretreatments, respectively in comparison to the conventional alkaline extraction. The molecular weight distribution recorded for pretreated samples disclosed a significant reduction in the band thickness in comparison with control. Both the pretreatments resulted in a significant increase (P < 0.05) in the antioxidant activity, and TCA solubility index when compared with the control. Results evinced that US and/or MW pretreatments before enzymatic hydrolysis can be a promising approach for the valorization of almond meal for its subsequent use as an ingredient for functional foods/nutraceuticals which otherwise fetches low value as an animal feed.

4.
J Food Sci Technol ; 60(3): 1195-1201, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36908371

ABSTRACT

Spent hen meat is considered as a category of waste generated by the poultry sector which can lead to serious environmental concerns if not disposed and utilized properly. In this work, spent hen meat was hydrolysed by 2% Flavourzyme (6.5 pH, 55 °C) followed by ultrafiltration to produce three peptide fractions with molecular weights > 10 kDa, 5-10 kDa and < 5 kDa. These fractions were evaluated for antioxidant potential, SDS PAGE and amino acid profile. The SDS PAGE profile demonstrated bands in the low molecular weight (< 10 kDa) region. Peptide fractions of < 5 kDa exhibited highest antioxidant activity and, essential as well as hydrophobic amino acid composition than whole hydrolysate and other peptide fractions. Incorporation of the identified hydrolysate fraction in food could improve its shelf stability while serving as a preventive component against human degenerative diseases.

5.
Foods ; 11(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36010501

ABSTRACT

A completely randomized design was applied on pomegranate arils for several post-harvest treatments before the packaging in polypropylene boxes for 15 days at (5 ± 1 °C, 95 ± 2% RH): control (untreated), Aloe vera gel (10% or 20%), 10% Aloe vera + rosehip oil (0.25% or 0.50%), 20% Aloe vera + rosehip oil (0.25% or 0.50%), 10% Aloe vera + cinnamon oil (0.25% or 0.50%), and 20% Aloe vera + cinnamon oil (0.25% or 0.50%). Aloe vera in combination with cinnamon oil resulted in an enhanced shelf life (15 d) compared to the uncoated arils (control). The Aloe vera + cinnamon oil coating led to the retention of total phenolics, anthocyanin, ascorbic acid, and antioxidant activity in context to the quality attributes. Moreover, this coating showed minimal change in the color, total soluble solids, titratable acidity, firmness, delayed ethylene production, respiration rate, and physiological weight loss. Also, A. vera + cinnamon oil coatings significantly (p < 0.05) inhibited the total counts of mesophilic aerobics, coliforms, and yeast and mold. Organoleptic attributes, including color, flavor, aroma, texture, and purchase acceptability were higher for the arils that were treated with 10% A. vera + 0.25% cinnamon oil; thus, this highly economical and easily available coating material can be formulated and used commercially to extend the shelf life and enhance the profit of the producers and/or processors.

6.
Front Nutr ; 9: 936932, 2022.
Article in English | MEDLINE | ID: mdl-35845799

ABSTRACT

The efficacy of the signaling molecule melatonin for alleviating chilling injury (CI) in mango (Mangifera indica L.) fruit was studied to investigate the potential role of membrane integrity, energy charge, and ripening-related changes in the development of CI, and its management by melatonin. 'Langra' and 'Gulab Jamun' cultivar mango fruit was immersed in 100 µM of melatonin before storage for 28 days at 5°C with weekly transfers to shelf life at 25°C. CI symptom development was associated with compositional and enzymatic aspects of textural changes, cell membrane deterioration, and chemical energy status. Melatonin-treated 'Langra' fruit exhibited very low CI (5 vs. 21%) while 'Gulab Jamun' fruit exhibited higher CI (36 vs. 38%) during 28 days of storage at 5 ± 1°C. Higher chilling tolerance in melatonin-treated 'Langra' was associated with lower softening, ascribed to lower cell wall degrading exo- and endo-polygalacturonase, pectinesterase, and endo-1,4-ß-D-glucanase. In addition, lower membrane deteriorating-phospholipase D and lipoxygenase activity in melatonin-treated 'Langra' corresponded to lower palmitic and stearic acids and higher oleic, linoleic, and linolenic acids accumulation, thus, higher unsaturated/saturated fatty acids ratio. Additionally, there was a higher intracellular energy supply with melatonin, represented by a higher adenylate energy charge (AEC) arising from higher ATP and ADP and lower AMP accumulation, related to higher H+-ATPase, Ca2+-ATPase, succinate dehydrogenase, and cytochrome c oxidase activities. This study for the first time provides evidence, suggesting that melatonin alleviation of CI is related to the preservation of membrane integrity, thereby protecting the intracellular energy supply, and preserving cell wall integrity via impeding cell wall degrading enzyme activities.

7.
Antioxidants (Basel) ; 11(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35624857

ABSTRACT

Macroalgae are a rich source of polyphenols, and their ingestion promotes various health benefits. However, information on factors contributing to health benefits such as antioxidants, antimicrobial properties, bioaccessibility, and cytotoxicity is less explored and often unavailable. Therefore, this study aims to investigate the above-mentioned parameters for the brown and green macroalgae Sargassum wightii and Ulva rigida, respectively, collected from the southeast coast of India. S. wightii exhibited higher antioxidant activity and moderate antimicrobial activity against major food pathogens in an agar well diffusion assay and in the broth microdilution method (MIC50 being <0.5 mg/mL for all microorganisms tested). Both macroalgae extracts exhibited significantly high bioaccessibility of polyphenols. To evaluate the safety of the extracts, in vitro cytotoxicity by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was carried out on the primary cells: mouse splenic lymphocytes. An almost complete decline in the cell viability was seen at considerably high concentration (50 mg/mL), expressing the reasonably high safety of the extracts. The extracts of both macroalgae were quantified for polyphenols, wherein fucoxanthin (9.27 ± 2.28 mg/kg DW) and phloroglucinol (17.96 ± 2.80 mg/kg DW) were found to be greater in the S. wightii apart from other phenolics, like gallic acid, quercetin, vanillin, and ferulic acid. The results signify the tremendous scope for the value addition of S. wightii through extraction and purification of polyphenols for its potential exploitation in functional foods and nutraceuticals or as an antimicrobial ingredient in active or smart packaging.

8.
Antioxidants (Basel) ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35204267

ABSTRACT

Melatonin (MT) treatment (100 µM, 2 h) was applied to four mango fruit cultivars ('Langra', 'Chaunsa', 'Dashehari', and 'Gulab Jamun'), before being stored at 5 ± 1 °C for 28 d, in order to alleviate chilling injury (CI). Maximum CI reduction was observed in 'Langra' mangoes, and minimum in 'Gulab Jamun' mangoes. This positive effect on quality preservation was associated with an increased concentration of endogenous MT, which prevented the accumulation of reactive oxygen species (H2O2 and O2·-) and stimulated non-enzymatic antioxidants (total phenolic compounds and total flavonoids), possibly due to higher activity of phenylalanine ammonia lyase and tyrosine ammonia lyase. Increased antioxidant activity was also documented in MT-treated 'Langra' mangoes, according to four different assays (DPPH, TEAC, FRAP, and CUPRAC) and higher activity of six antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase). In contrast, 'Gulab Jamun' mangoes showed minimal or no positive effects on the aforementioned variables in response to the exogenous MT application. 'Chaunsa' and 'Dashehari' mangoes had some intermediate effects on their antioxidant system (enzymatic and non-enzymatic) and alleviation of CI, when treated with exogenous MT. We conclude that exogenous MT exerts a cultivar-dependent stimulating effect on the antioxidant system of mangoes, which results in an increase in the fruits' resistance to low temperature.

9.
Int J Vitam Nutr Res ; 92(5-6): 385-405, 2022 Oct.
Article in English | MEDLINE | ID: mdl-32781911

ABSTRACT

Carotenoids and their metabolites play crucial roles in human health such as in immunity, cell differentiation, embryonic development, maintenance of plasma membrane integrity, and gastrointestinal functions, in addition to counteracting night blindness and other eye-related diseases. However, carotenoid bioavailability is highly variable and often low. The bioavailability of ß-carotene, among the most frequently consumed carotenoid from the diet, is determined by food matrix related factors such as carotenoid dose, its location in food the matrix, the physical state in food, the presence of other food compounds in the matrix such as dietary fiber, dietary lipids, other micronutrients present such as minerals, and food processing, influencing also the size of food particles, and the presence of absorption inhibitors (fat replacers and anti-obesity drugs) or enhancers (nano-/micro-formulations). However, also host-related factors such as physiochemical interactions by gastrointestinal secretions (enzyme and salts) and other host-related factors such as surgery, age, disease, obesity, and genetic variations have shown to play a role. This review contributes to the knowledge regarding factors affecting the bioavailability of ß-carotene (food and host-relegated), as well as highlights in vitro models employed to evaluate ß-carotene bioavailability aspects.


Subject(s)
Anti-Obesity Agents , beta Carotene , Anti-Obesity Agents/metabolism , Biological Availability , Carotenoids/metabolism , Dietary Fats/metabolism , Dietary Fiber/metabolism , Gastrointestinal Tract/metabolism , Humans , Micronutrients/metabolism , Minerals/metabolism , Salts/metabolism , beta Carotene/metabolism
10.
Bioresour Technol ; 346: 126409, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34838972

ABSTRACT

Spent tea leaves (STL) are generated after the extraction of liquor from processed tea leaves and are regarded as an underutilized waste. STL are rich in essential amino acids, ω-6 and ω-3 fatty acids, alkaloids (theobromine and caffeine), polyphenols (catechin, theaflavins and rutin) and minerals (Ca, P, K, Mg, Mn) that could be utilized for the production of industrially important products. Vermicomposting, anaerobic digestion, silage preparation and fermentation are currently used as low cost methods for the bioconversion of STL to a usable form. Structural, morphological and chemical modification of STL after suitable bioconversion enables its application in the development of biopolymers, biofuels, catechin derivatives, biochar, absorbents for dye, and for removal of Cd, Hg, Cr(IV), As(V) and aspirin. This review discusses the composition, characterization, bioconversion and value added product generation from STL while highlighting prospective applications of STL in developing battery electrodes, nanocatalysts, insulation materials and edible bioactive peptides.


Subject(s)
Plant Leaves , Tea , Biofuels , Fermentation , Polyphenols
11.
Antioxidants (Basel) ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802152

ABSTRACT

Nanotechnology has opened new opportunities for delivering bioactive agents. Their physiochemical characteristics, i.e., small size, high surface area, unique composition, biocompatibility and biodegradability, make these nanomaterials an attractive tool for ß-carotene delivery. Delivering ß-carotene through nanoparticles does not only improve its bioavailability/bioaccumulation in target tissues, but also lessens its sensitivity against environmental factors during processing. Regardless of these benefits, nanocarriers have some limitations, such as variations in sensory quality, modification of the food matrix, increasing costs, as well as limited consumer acceptance and regulatory challenges. This research area has rapidly evolved, with a plethora of innovative nanoengineered materials now being in use, including micelles, nano/microemulsions, liposomes, niosomes, solidlipid nanoparticles, nanostructured lipids and nanostructured carriers. These nanodelivery systems make conventional delivery systems appear archaic and promise better solubilization, protection during processing, improved shelf-life, higher bioavailability as well as controlled and targeted release. This review provides information on the state of knowledge on ß-carotene nanodelivery systems adopted for developing functional foods, depicting their classifications, compositions, preparation methods, challenges, release and absorption of ß-carotene in the gastrointestinal tract (GIT) and possible risks and future prospects.

12.
Heliyon ; 6(11): e05478, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33241150

ABSTRACT

Onion skin possesses various health benefits due to its phenolic and antimicrobial components. In this study, sonication-assisted extracts of onion skin of differentially coloured cultivars (dark-red, red, pink and white) were investigated for their antimicrobial activity against six pathogenic bacteria. Antimicrobial efficacy of fifteen different coloured extracts was analysed by agar well-diffusion assay with principal component analysis (PCA) for comprehensive investigation. Result showed skin extracts of pink cultivars (cv.) significantly (P ≤ 0.05) effective against pathogenic bacteria followed by red and dark red skin. White skin showed least effect on the growth of bacteria. Skin of cv. 'Phursungi Local' (pink) and cv. 'Hissar-3' (pink) showed best range of inhibition against Staphylococcus aureus, Klebsiella pnuemoniae, Bacillus cereus and Solmonella typhimurium compared to other. Only white skin extracts of cv. 'Bhima Shubhra' and 'Udaipur Local' inhibited the growth of Pseudomonas aeruginosa up to 4.0 ± 0.0 mm. Minimum inhibitory concentration (MIC) of the effective extracts was also elucidated in the range between 0.09 - 9.0 mg/mL. Skin extracts of cv. 'Hissar-2' (red) and 'Bhima Shubhra' (white) showed better inhibition at the concentration of 0.45 and 0.72 mg/mL against Streptococcus agalactiae and Pseudomonas aeruginosa, respectively. As per correlation analysis, positive correlation was obtained between total flavonoids and inhibition rate of all the bacteria while a weak correlation (R2 = 0.3967) was observed against Pseudomonas aeruginosa. The waste skin of the analysed cultivars can be utilised in food and health sector as natural preservative and antimicrobial agent.

13.
Sci Rep ; 10(1): 18669, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122789

ABSTRACT

In the present research, wheat flour was replaced with onion skin powder (OSP) in 2%, 3.5%, and 5% concentration along with control to produce different pizza base variants. Prepared pizza doughs and base were investigated for different quality parameters. Rheology revealed that increased concentration of OSP elevated the storage modulus (G') (solid nature) of pizza doughs. Colour measurement of both the doughs and pizza base exhibited lightness in control (L* 86.46 ± 0.39) and darkness in 5% OSP variant (L* 46.43 ± 0.69). Physicochemical investigation showed no significant difference however, a gradual increase was obtained in fiber, water, and oil holding capacity of pizza base. Texture properties showed that the addition of OSP imparted an increased trend of hardness i.e. 5% OSP variant had maximum hardness (14.87 ± 0.20 N). A higher level of total phenols, total flavonoids, and antioxidant activity was obtained in fortified products, which exhibits onion skin as a natural source of antioxidants for functional foods. Sensory evaluation revealed OSP 2% as the most accepted variant in terms of overall acceptability. The storage study of the pizza base revealed that controlled environment was the best-suited atmosphere for a longer shelf-life of pizza base.

14.
J Food Sci Technol ; 57(7): 2423-2432, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32549592

ABSTRACT

Onion waste disposal issue could be solved by using onion skin as food ingredient. Therefore, the aim of present study is the estimation of flavonoid concentration, total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities of onion skin of fifteen Indian cultivars. Flavonoid quantification was achieved by high performance liquid chromatography, which showed highest concentration of quercetin, quercetin 3-ß-D-glucoside, luteolin and kaempferol in cv. 'NHRDF Red' (11,885.025 mg/kg), 'Hissar-2' (1432.875 mg/kg), 'Pusa Riddhi' (1669.925 mg/kg) and 'Bhima Shakti' (709.975 mg/kg), respectively in dry weight. Highest TPC and TFC were found in cv. 'NHRDF Red' while lowest were measured in cv. 'Bhima Shubhra'. DPPH assay (%), ABTS assay (%) and FRAP assay (µmol gallic acid/g) were showed maximum antioxidant capacity for cv. 'NHRDF Red' whereas least obtained for cv. 'Bhima Shubhra'. Skin of cv. 'Hissar-2' and 'NHRDF Red' are the best source of flavonoids and natural antioxidants.

15.
J Sci Food Agric ; 98(9): 3492-3500, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29314034

ABSTRACT

BACKGROUND: A randomized block design experiment was performed to investigate the influence of drying on the physical, chemical and nutritional quality attributes of five prominent cultivars of India under sun drying (SD) (mean temperature 35.5 °C, average daily radiation 5.26 kW h m-2 and mean relative humidity 73.66% RH), hot air drying (HD) at 65 °C, microwave vacuum drying (MVD) (800 W, 5 kPa) and freeze drying (FD) (-50 °C, 5 kPa). Water activity, pH, total phenolic content (TPC), ascorbic acid (AA), capsaicin, ß-carotene, color and Scoville heat unit were studied. RESULTS: TPC, AA, capsaicin content, ß-carotene, color and water activity were significantly affected by the drying method. FD was observed to be most efficient in minimizing the loss of color, capsaicin and ß-carotene. The hotness of analyzed samples decreased in the order 'Bird's Eye' > 'Sannam S4' > 'CO-4' > 'PLR-1' > 'PKM-1' among the studied cultivars, and FD > MVD > HD > SD among the drying methods. CONCLUSION: The FD method was observed to be the most efficient drying method for retaining capsaicin content over other drying methods (SD, HD, MVD), whereas MVD was found to be most efficient in minimizing the loss to nutritional attributes for all five pepper cultivars. © 2018 Society of Chemical Industry.


Subject(s)
Capsicum/chemistry , Desiccation/methods , Nutritive Value , Ascorbic Acid/analysis , Capsaicin/analysis , Freeze Drying , Hot Temperature , Microwaves , Phenols/analysis , Sunlight , Vacuum , Water/analysis , beta Carotene/analysis
16.
Compr Rev Food Sci Food Saf ; 17(3): 512-531, 2018 May.
Article in English | MEDLINE | ID: mdl-33350136

ABSTRACT

Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health-promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by-products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.

17.
Int J Mol Sci ; 18(8)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28817100

ABSTRACT

Polyamines (PAs) are natural compounds involved in many growth and developmental processes in plants, and, specifically in fruits, play a vital role regulating its development, ripening and senescence processes. Putrescine (PUT), spermine (SPE), and spermidine (SPD) are prominent PAs applied exogenously to extend shelf life of fruits. They also originate endogenously during developmental phases of horticultural crops and simultaneously affect the quality attributes and shelf life. Their anti-ethylene nature is being exploited to enhance the shelf life when exogenously applied on fruits. In growth and development of fruits, PA levels generally fall, which marks the beginning of senescence at postharvest phase. PUT, SPE and SPD treatments are being applied during postharvest phase to prolong the shelf life. They enhance the shelf life of fruits by reducing respiration rate, ethylene release and enhance firmness and quality attributes in fruits. PAs have a mitigating impact on biotic and abiotic stresses including chilling injury (CI) in tropical and sub-tropical fruits. PAs are environment friendly in nature and are biodegradable without showing any negative effect on environment. Biotechnological interventions by using chimeric gene constructs of PA encoding genes has boosted the research to develop transgenic fruits and vegetables which would possess inherent or in situ mechanism of enhanced biosynthesis of PAs at different stages of development and thereby will enhance the shelf life and quality in fruits. Internal and external quality attributes of fruits are improved by modulation of antioxidant system and by strengthening biophysical morphology of fruits by electrostatic interaction between PAs and phospholipids in the cell wall.


Subject(s)
Fruit/metabolism , Plant Development , Plants, Genetically Modified/metabolism , Polyamines/metabolism , Antioxidants/metabolism , Ethylenes/antagonists & inhibitors , Ethylenes/metabolism , Fruit/genetics , Fruit/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Putrescine/metabolism , Spermidine/metabolism , Spermine/metabolism
18.
J Sci Food Agric ; 95(12): 2360-79, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25565362

ABSTRACT

Pomegranate is a subtropical and tropical fruit of great importance from a health point of view. Despite increasing consumer awareness of the health benefits of pomegranate, consumption of the fruit is still limited owing to poor postharvest handling, storage recommendations, short shelf life and quality deterioration during transportation, storage and marketing. The occurrence of physiological disorders such as husk scald, splitting and chilling injury is another challenge reducing marketability and consumer acceptance. Recently, notable work on postharvest biology and technology has been done. Pomegranate is highly sensitive to low-oxygen (<5 kPa) atmospheres, chilling injury and decay. One of the major problems associated with pomegranate fruit is excessive weight loss, which may result in hardening of the husk and browning of the rind and arils. To reduce chilling injury incidence and to extend storability and marketing of pomegranates, good results were obtained with polyamine, heat, salicylic acid, methyl jasmonate or methyl salicylate treatments prior to cold storage. This article reviews the maturity indices, changes during maturation and ripening, postharvest physiology and technology of pomegranate fruit as well as the various postharvest treatments for maintaining fruit quality.


Subject(s)
Food Handling , Food Industry , Lythraceae , Humans
19.
J Sci Food Agric ; 94(8): 1495-1504, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24395491

ABSTRACT

Loquat (Eriobotrya japonica Lindl.) is a subtropical evergreen tree whose fruit is consumed both fresh and processed. Loquat fruit is a good source of minerals and carotenoids, while the kernel is rich in protein and carbohydrates. It has been considered a non-climacteric fruit, but there is evidence that some cultivars have a ripening pattern similar to that of climacteric fruits. The fruit has a short postharvest life at ambient temperatures and is susceptible to physical and mechanical damage, loss of moisture and nutrients, and decay. Low-temperature storage extends the shelf life of loquat fruit, but some cultivars are severely affected by chilling injury and flesh browning during cold storage. Purple spot, browning and leatheriness are major postharvest disorders. The shelf life of loquat can be extended by modified or controlled atmosphere storage as well as by postharvest treatment with 1-methyl cyclopropene or methyl jasmonate.


Subject(s)
Eriobotrya/physiology , Food Technology , Fruit/physiology , Carbohydrates/analysis , Carboxylic Acids/analysis , Carotenoids/analysis , Cold Temperature , Ethylenes/biosynthesis , Food Handling/methods , Food Preservation/methods , Fruit/chemistry , Fruit/growth & development , Minerals/analysis , Nutritive Value , Plant Proteins/analysis , Seeds/chemistry
20.
J Sci Food Agric ; 93(8): 1940-4, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23255157

ABSTRACT

BACKGROUND: The effect of storage temperature on physiological responses in Indian jujube (Ziziphus mauritiana Lamk. cv. Gola) fruit was investigated. Freshly harvested fruits at physiological maturity characterised by colour-turning stage were stored at ambient temperature, 12 and 6 °C for 21, 35 and 35 days respectively. Headspace O2, CO2 and C2H4, moisture content, respiration, ethylene production, firmness, tristimulus colour, chroma, hue angle and chilling injury index were monitored during fruit storage. RESULTS: Rates of respiration and ethylene production increased after 1 week of storage at ambient temperature, while peaks were observed after 2 weeks at 12 and 6 °C. Headspace O2 decreased continuously during storage, while CO2 and C2H4 increased at all storage temperatures. Moisture content and firmness also decreased during storage. Hunter L* values increased during storage, which correlated with the darkening of fruit colour. Fruit stored at ambient temperature did not show any chilling injury symptoms, while chilling injury appeared on day 28 under 12 °C storage and on day 21 under 6 °C storage. CONCLUSION: Indian jujube fruit showed high rates of respiration and ethylene production that were significantly affected by different storage temperatures. Lower temperatures increased the shelf life of the fruit, but chilling injury was a problem under 6 °C storage. Indian jujube fruit could be stored at 6 °C for up to 35 days if chilling injury could be alleviated.


Subject(s)
Food Packaging/methods , Food Storage , Fruit/physiology , Ziziphus/physiology , Carbon Dioxide , Cold Temperature , Ethylenes/chemistry , Ethylenes/metabolism , Fruit/chemistry , Oxygen , Plant Transpiration , Temperature , Time Factors , Ziziphus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...