Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur Heart J ; 44(14): 1265-1279, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36721994

ABSTRACT

AIMS: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of pulmonary hypertension (PH). Proliferative cells utilize purine bases from the de novo purine synthesis (DNPS) pathways for nucleotide synthesis; however, it is unclear whether DNPS plays a critical role in VSMC proliferation during development of PH. The last two steps of DNPS are catalysed by the enzyme 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC). This study investigated whether ATIC-driven DNPS affects the proliferation of pulmonary artery smooth muscle cells (PASMCs) and the development of PH. METHODS AND RESULTS: Metabolites of DNPS in proliferative PASMCs were measured by liquid chromatography-tandem mass spectrometry. ATIC expression was assessed in platelet-derived growth factor-treated PASMCs and in the lungs of PH rodents and patients with pulmonary arterial hypertension. Mice with global and VSMC-specific knockout of Atic were utilized to investigate the role of ATIC in both hypoxia- and lung interleukin-6/hypoxia-induced murine PH. ATIC-mediated DNPS at the mRNA, protein, and enzymatic activity levels were increased in platelet-derived growth factor-treated PASMCs or PASMCs from PH rodents and patients with pulmonary arterial hypertension. In cultured PASMCs, ATIC knockdown decreased DNPS and nucleic acid DNA/RNA synthesis, and reduced cell proliferation. Global or VSMC-specific knockout of Atic attenuated vascular remodelling and inhibited the development and progression of both hypoxia- and lung IL-6/hypoxia-induced PH in mice. CONCLUSION: Targeting ATIC-mediated DNPS compromises the availability of purine nucleotides for incorporation into DNA/RNA, reducing PASMC proliferation and pulmonary vascular remodelling and ameliorating the development and progression of PH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Animals , Rodentia/metabolism , Vascular Remodeling/physiology , Pulmonary Artery , Purines/metabolism , Cells, Cultured , Hypoxia/metabolism , RNA, Messenger/metabolism , Platelet-Derived Growth Factor/metabolism , Cell Proliferation , Myocytes, Smooth Muscle/metabolism
2.
Circulation ; 146(19): 1444-1460, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36073366

ABSTRACT

BACKGROUND: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of arterial diseases, especially in arterial restenosis after angioplasty or stent placement. VSMCs reprogram their metabolism to meet the increased requirements of lipids, proteins, and nucleotides for their proliferation. De novo purine synthesis is one of critical pathways for nucleotide synthesis. However, its role in proliferation of VSMCs in these arterial diseases has not been defined. METHODS: De novo purine synthesis in proliferative VSMCs was evaluated by liquid chromatography-tandem mass spectrometry. The expression of ATIC (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase), the critical bifunctional enzyme in the last 2 steps of the de novo purine synthesis pathway, was assessed in VSMCs of proliferative arterial neointima. Global and VSMC-specific knockout of Atic mice were generated and used for examining the role of ATIC-associated purine metabolism in the formation of arterial neointima and atherosclerotic lesions. RESULTS: In this study, we found that de novo purine synthesis was increased in proliferative VSMCs. Upregulated purine synthesis genes, including ATIC, were observed in the neointima of the injured vessels and atherosclerotic lesions both in mice and humans. Global or specific knockout of Atic in VSMCs inhibited cell proliferation, attenuating the arterial neointima in models of mouse atherosclerosis and arterial restenosis. CONCLUSIONS: These results reveal that de novo purine synthesis plays an important role in VSMC proliferation in arterial disease. These findings suggest that targeting ATIC is a promising therapeutic approach to combat arterial diseases.


Subject(s)
Atherosclerosis , Hydroxymethyl and Formyl Transferases , Humans , Mice , Animals , Neointima , Purines , Cell Proliferation , Myocytes, Smooth Muscle , Atherosclerosis/genetics
3.
J Biol Chem ; 298(5): 101853, 2022 05.
Article in English | MEDLINE | ID: mdl-35331738

ABSTRACT

There is growing evidence that mammalian cells deploy a mitochondria-associated metabolon called the purinosome to perform channeled de novo purine biosynthesis (DNPB). However, the molecular mechanisms of this substrate-channeling pathway are not well defined. Here, we present molecular evidence of protein-protein interactions (PPIs) between the human bifunctional phosphoribosylaminoimidazole carboxylase/succinocarboxamide synthetase (PAICS) and other known DNPB enzymes. We employed two orthogonal approaches: bimolecular fluorescence complementation, to probe PPIs inside live, intact cells, and co-immunoprecipitation using StrepTag-labeled PAICS that was reintegrated into the genome of PAICS-knockout HeLa cells (crPAICS). With the exception of amidophosphoribosyltransferase, the first enzyme of the DNPB pathway, we discovered PAICS interacts with all other known DNPB enzymes and with MTHFD1, an enzyme which supplies the 10-formyltetrahydrofolate cofactor essential for DNPB. We show these interactions are present in cells grown in both purine-depleted and purine-rich conditions, suggesting at least a partial assembly of these enzymes may be present regardless of the activity of the DNPB pathway. We also demonstrate that tagging of PAICS on its C terminus disrupts these interactions and that this disruption is correlated with disturbed DNPB activity. Finally, we show that crPAICS cells with reintegrated N-terminally tagged PAICS regained effective DNPB with metabolic signatures of channeled synthesis, whereas crPAICS cells that reintegrated C-terminally tagged PAICS exhibit reduced DNPB intermediate pools and a perturbed partitioning of inosine monophosphate into AMP and GMP. Our results provide molecular evidence in support of purinosomes and suggest perturbing PPIs between DNPB enzymes negatively impact metabolite flux through this important pathway.


Subject(s)
Peptide Synthases , Purines , Humans , Amidophosphoribosyltransferase , HeLa Cells , Peptide Synthases/metabolism , Purines/biosynthesis
4.
Annu Rev Biochem ; 91: 89-106, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35320684

ABSTRACT

Over the past fifteen years, we have unveiled a new mechanism by which cells achieve greater efficiency in de novo purine biosynthesis. This mechanism relies on the compartmentalization of de novo purine biosynthetic enzymes into a dynamic complex called the purinosome. In this review, we highlight our current understanding of the purinosome with emphasis on its biophysical properties and function and on the cellular mechanisms that regulate its assembly. We propose a model for functional purinosomes in which they consist of at least ten enzymes that localize near mitochondria and carry out de novo purine biosynthesis by metabolic channeling. We conclude by discussing challenges and opportunities associated with studying the purinosome and analogous metabolons.


Subject(s)
Mitochondria , Purines , Animals , Mammals/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Purines/metabolism
5.
Mol Cell ; 81(18): 3775-3785, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34547238

ABSTRACT

With the elucidation of myriad anabolic and catabolic enzyme-catalyzed cellular pathways crisscrossing each other, an obvious question arose: how could these networks operate with maximal catalytic efficiency and minimal interference? A logical answer was the postulate of metabolic channeling, which in its simplest embodiment assumes that the product generated by one enzyme passes directly to a second without diffusion into the surrounding medium. This tight coupling of activities might increase a pathway's metabolic flux and/or serve to sequester unstable/toxic/reactive intermediates as well as prevent their access to other networks. Here, we present evidence for this concept, commencing with enzymes that feature a physical molecular tunnel, to multi-enzyme complexes that retain pathway substrates through electrostatics or enclosures, and finally to metabolons that feature collections of enzymes assembled into clusters with variable stoichiometric composition. Lastly, we discuss the advantages of reversibly assembled metabolons in the context of the purinosome, the purine biosynthesis metabolon.


Subject(s)
Metabolic Networks and Pathways/physiology , Metabolism/physiology , Metabolome/physiology , Animals , Humans , Multienzyme Complexes/metabolism , Protein Interaction Maps/physiology , Purines/metabolism
6.
Crit Rev Biochem Mol Biol ; 56(1): 1-16, 2021 02.
Article in English | MEDLINE | ID: mdl-33179964

ABSTRACT

The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.


Subject(s)
Multienzyme Complexes/metabolism , Proteins/metabolism , Purines/biosynthesis , Signal Transduction/physiology , Adenosine Monophosphate/metabolism , Biosynthetic Pathways , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Guanosine Monophosphate/metabolism , Humans , Microtubules/metabolism , Mitochondria/metabolism , Phosphoribosyl Pyrophosphate/metabolism , Phosphorylation
7.
Science ; 368(6488): 283-290, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32299949

ABSTRACT

Metabolons, multiprotein complexes consisting of sequential enzymes of a metabolic pathway, are proposed to be biosynthetic "hotspots" within the cell. However, experimental demonstration of their presence and functions has remained challenging. We used metabolomics and in situ three-dimensional submicrometer chemical imaging of single cells by gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) to directly visualize de novo purine biosynthesis by a multienzyme complex, the purinosome. We found that purinosomes comprise nine enzymes that act synergistically, channeling the pathway intermediates to synthesize purine nucleotides, increasing the pathway flux, and influencing the adenosine monophosphate/guanosine monophosphate ratio. Our work also highlights the application of high-resolution GCIB-SIMS for multiplexed biomolecular analysis at the level of single cells.


Subject(s)
Metabolomics/methods , Optical Imaging/methods , Purines/biosynthesis , Spectrometry, Mass, Secondary Ion/methods , HeLa Cells , Humans , Mitochondria/metabolism , Multienzyme Complexes/metabolism , Single-Cell Analysis
8.
Chembiochem ; 17(7): 620-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26762569

ABSTRACT

Despite extensive research into triosephosphate isomerases (TIMs), there exists a gap in understanding of the remarkable conjunction between catalytic loop-6 (residues 166-176) movement and the conformational flip of Glu165 (catalytic base) upon substrate binding that primes the active site for efficient catalysis. The overwhelming occurrence of serine at position 96 (98% of the 6277 unique TIM sequences), spatially proximal to E165 and the loop-6 residues, raises questions about its role in catalysis. Notably, Plasmodium falciparum TIM has an extremely rare residue--phenylalanine--at this position whereas, curiously, the mutant F96S was catalytically defective. We have obtained insights into the influence of residue 96 on the loop-6 conformational flip and E165 positioning by combining kinetic and structural studies on the PfTIM F96 mutants F96Y, F96A, F96S/S73A, and F96S/L167V with sequence conservation analysis and comparative analysis of the available apo and holo structures of the enzyme from diverse organisms.


Subject(s)
Catalytic Domain , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism , Amino Acid Sequence , Catalysis , Conserved Sequence , Genetic Variation , Mutation , Protein Conformation , Protein Structure, Tertiary , Triose-Phosphate Isomerase/chemistry
9.
Behav Processes ; 106: 22-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24747068

ABSTRACT

In many primitively eusocial wasp species new nests are founded either by a single female or by a small group of females. In the single foundress nests, the lone female develops her ovaries, lays eggs as well as tends her brood. In multiple foundress nests social interactions, especially dominance-subordinate interactions, result in only one 'dominant' female developing her ovaries and laying eggs. Ovaries of the remaining 'subordinate' cofoundresses remain suppressed and these individuals function as workers and tend the dominant's brood. Using the tropical, primitively eusocial polistine wasp Ropalidia marginata and by comparing wasps held in isolation and those kept as pairs in the laboratory, we demonstrate that social interactions affect ovarian development of dominant and subordinate wasps among the pairs in opposite directions, suppressing the ovaries of the subordinate member of the pair below that of solitary wasps and boosting the ovaries of dominant member of the pair above that of solitary females. In addition to being of physiological interest, such mirror image effects of aggression on the ovaries of the aggressors and their victims, suggest yet another mechanism by which subordinates can enhance their indirect fitness and facilitate the evolution of worker behavior by kin selection.


Subject(s)
Behavior, Animal/physiology , Dominance-Subordination , Ovary/growth & development , Wasps/physiology , Animals , Female
10.
Innate Immun ; 14(5): 309-18, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18809655

ABSTRACT

Lipopolysaccharide (LPS) is a major cell wall component of Gram-negative bacteria and is known to cause actin cytoskeleton reorganization in a variety of cells including macrophages. Actin cytoskeleton dynamics influence many cell signaling pathways including the NF-kappaB pathway. LPS is also known to induce the expression of many pro-inflammatory genes via the NF-kappaB pathway. Here, we have investigated the role of actin cytoskeleton in LPS-induced NF-kappaB activation and signaling leading to the expression of iNOS and nitric oxide production. Using murine macrophages, we show that disruption of actin cytoskeleton by either cytochalasin D (CytD) or latrunculin B (LanB) does not affect LPS-induced NF-kappaB activation and the expression of iNOS, a NF-kappaB target gene. However, disruption of actin cytoskeleton caused significant reduction in LPS-induced nitric oxide production indicating a role of actin cytoskeleton in the post-translational regulation of iNOS.


Subject(s)
Actins/immunology , Carrier Proteins/metabolism , Lipopolysaccharides/immunology , Macrophages, Peritoneal/immunology , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/biosynthesis , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Carrier Proteins/drug effects , Cytochalasin D/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/immunology , Mice , Mice, Inbred C57BL , Neoplasm Proteins/drug effects , Signal Transduction/drug effects , Thiazolidines/pharmacology , Transcription Factor RelA , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...