Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Analyst ; 148(17): 3986-3991, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37539806

ABSTRACT

A fast and accurate assessment of liver steatosis is crucial during liver transplantation surgery as it can negatively impact its success. Recent research has shown that near-infrared (NIR) and attenuated total reflectance-Fourier transform mid-infrared (ATR-FTIR) spectroscopy could be used as real-time quantitative tools to assess steatosis during abdominal surgery. Here, in the frame of a clinical study, we explore the performance of NIR and ATR-FTIR spectroscopy for the direct assessment of steatosis in liver tissues. Results show that both NIR and ATR-FTIR spectroscopy are able to quantify the % of steatosis with cross-validation errors of 1.4 and 1.6%, respectively. Furthermore, the two portable instruments used both provided results within seconds and can be placed inside an operating room evidencing the potential of IR spectroscopy for initial characterization of grafts in liver transplantation surgery. We also evaluated the complementarity of the spectral ranges through correlation spectroscopy.


Subject(s)
Fatty Liver , Organ Transplantation , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectroscopy, Near-Infrared/methods
2.
Nutrients ; 15(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513605

ABSTRACT

Bariatric surgery (BS) has several benefits, including resolution of non-alcoholic fatty liver disease (NAFLD) in many patients. However, a significant percentage of patients do not experience improvement in fatty liver after BS, and more than 10% develop new or worsening NAFLD features. Therefore, a question that remains unanswered is why some patients experience resolved NAFLD after BS and others do not. In this study, we investigated the fecal microbiota and plasma bile acids associated with NAFLD resolution in twelve morbidly obese patients undergoing BS, of whom six resolved their steatosis one year after surgery and another six did not. Results indicate that the hallmark of the gut microbiota in responder patients is a greater abundance of Bacteroides, Akkermansia, and several species of the Clostridia class (genera: Blautia, Faecalibacterium, Roseburia, Butyricicoccusa, and Clostridium), along with a decreased abundance of Actinomycetes/Bifidobacterium and Faecalicatena. NAFLD resolution was also associated with a sustained increase in primary bile acids (particularly non-conjugated), which likely results from a reduction in bacterial gut species capable of generating secondary bile acids. We conclude that there are specific changes in gut microbiota and plasma bile acids that could contribute to resolving NAFLD in BS patients. The knowledge acquired can help to design interventions with prebiotics and/or probiotics to promote a gut microbiome that favors NAFLD resolution.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Non-alcoholic Fatty Liver Disease/microbiology , Bile Acids and Salts , Obesity, Morbid/surgery , Liver
3.
Analyst ; 148(13): 3097-3106, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37313751

ABSTRACT

The assessment of liver steatosis is crucial in both hepatology and liver transplantation (LT) surgery. Steatosis can negatively impact the success of LT. Steatosis is a factor for excluding donated organs for LT, but the increasing demand for transplantable organs has led to the use of organs from marginal donors. The current standard for evaluating steatosis is a semi-quantitative grading based on the visual examination of a hematoxylin and eosin (H&E)-stained liver biopsy, but this method is time-consuming, subjective, and lacks reproducibility. Recent research has shown that infrared (IR) spectroscopy could be used as a real-time quantitative tool to assess steatosis during abdominal surgery. However, the development of IR-based methods has been hindered by the lack of appropriate quantitative reference values. In this study, we developed and validated digital image analysis methods for the quantitation of steatosis in H&E-stained liver sections using univariate and multivariate strategies including linear discriminant analysis (LDA), quadratic DA, logistic regression, partial least squares-DA (PLS-DA), and support vector machines. The analysis of 37 tissue samples with varying grades of steatosis demonstrates that digital image analysis provides accurate and reproducible reference values that improve the performance of IR spectroscopic models for steatosis quantification. A PLS model in the 1810-1052 cm-1 region using first derivative ATR-FTIR spectra provided RMSECV = 0.99%. The gained improvement in accuracy critically enhances the applicability of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to support an objective graft evaluation at the operation room, which might be especially relevant in cases of marginal liver donors to avoid unnecessary graft explantation.


Subject(s)
Fatty Liver , Humans , Spectroscopy, Fourier Transform Infrared/methods , Reproducibility of Results , Spectrophotometry, Infrared , Fatty Liver/diagnostic imaging , Fatty Liver/pathology , Discriminant Analysis , Least-Squares Analysis
4.
Stem Cell Res Ther ; 14(1): 94, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072803

ABSTRACT

BACKGROUND: High-throughput pharmaco-toxicological testing frequently relies on the use of established liver-derived cell lines, such as HepG2 cells. However, these cells often display limited hepatic phenotype and features of neoplastic transformation that may bias the interpretation of the results. Alternate models based on primary cultures or differentiated pluripotent stem cells are costly to handle and difficult to implement in high-throughput screening platforms. Thus, cells without malignant traits, optimal differentiation pattern, producible in large and homogeneous amounts and with patient-specific phenotypes would be desirable. METHODS: We have designed and implemented a novel and robust approach to obtain hepatocytes from individuals by direct reprogramming, which is based on a combination of a single doxycycline-inducible polycistronic vector system expressing HNF4A, HNF1A and FOXA3, introduced in human fibroblasts previously transduced with human telomerase reverse transcriptase (hTERT). These cells can be maintained in fibroblast culture media, under standard cell culture conditions. RESULTS: Clonal hTERT-transduced human fibroblast cell lines can be expanded at least to 110 population doublings without signs of transformation or senescence. They can be easily differentiated at any cell passage number to hepatocyte-like cells with the simple addition of doxycycline to culture media. Acquisition of a hepatocyte phenotype is achieved in just 10 days and requires a simple and non-expensive cell culture media and standard 2D culture conditions. Hepatocytes reprogrammed from low and high passage hTERT-transduced fibroblasts display very similar transcriptomic profiles, biotransformation activities and show analogous pattern behavior in toxicometabolomic studies. Results indicate that this cell model outperforms HepG2 in toxicological screening. The procedure also allows generation of hepatocyte-like cells from patients with given pathological phenotypes. In fact, we succeeded in generating hepatocyte-like cells from a patient with alpha-1 antitrypsin deficiency, which recapitulated accumulation of intracellular alpha-1 antitrypsin polymers and deregulation of unfolded protein response and inflammatory networks. CONCLUSION: Our strategy allows the generation of an unlimited source of clonal, homogeneous, non-transformed induced hepatocyte-like cells, capable of performing typical hepatic functions and suitable for pharmaco-toxicological high-throughput testing. Moreover, as far as hepatocyte-like cells derived from fibroblasts isolated from patients suffering hepatic dysfunctions, retain the disease traits, as demonstrated for alpha-1-antitrypsin deficiency, this strategy can be applied to the study of other cases of anomalous hepatocyte functionality.


Subject(s)
Doxycycline , Hepatocytes , Humans , Doxycycline/pharmacology , Hepatocytes/metabolism , Liver , Cell Line , Cell Differentiation/genetics
5.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012565

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease worldwide, but a reliable non-invasive method to quantify liver steatosis in primary healthcare is not available. Circulating microRNAs have been proposed as biomarkers of severe/advanced NAFLD (steatohepatitis and fibrosis). However, the use of circulating miRNAs to quantitatively assess the % of liver fat in suspected NAFLD patients has not been investigated. We performed global miRNA sequencing in two sets of samples: human livers from organ donors (n = 20), and human sera from biopsy-proven NAFLD patients (n = 23), both with a wide range of steatosis quantified in their liver biopsies. Partial least squares (PLS) regression combined with recursive feature elimination (RFE) was used to select miRNAs associated with steatosis. Moreover, regression models with only 2 or 3 miRNAs, with high biological relevance, were built. Comprehensive microRNA sequencing of liver and serum samples resulted in two sets of abundantly expressed miRNAs (418 in liver and 351 in serum). Pearson correlation analyses indicated that 18% of miRNAs in liver and 14.5% in serum were significantly associated with the amount of liver fat. PLS-RFE models demonstrated that 50 was the number of miRNAs providing the lowest error in both liver and serum models predicting steatosis. Comparison of the two miRNA subsets showed 19 coincident miRNAs that were ranked according to biological significance (guide/passenger strand, relative abundance in liver and serum, number of predicted lipid metabolism target genes, correlation significance, etc.). Among them, miR-10a-5p, miR-98-5p, miR-19a-3p, miR-30e-5p, miR-32-5p and miR-145-5p showed the highest biological relevance. PLS regression models with serum levels of 2−3 of these miRNAs predicted the % of liver fat with errors <5%.


Subject(s)
Circulating MicroRNA , MicroRNAs , Non-alcoholic Fatty Liver Disease , Circulating MicroRNA/genetics , Circulating MicroRNA/metabolism , Humans , Lipid Metabolism , Liver/metabolism , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
6.
Anal Chem ; 92(21): 14542-14549, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33084322

ABSTRACT

The estimation of steatosis in a liver graft is mandatory prior to liver transplantation, as the risk of graft failure increases with the level of infiltrated fat. However, the assessment of liver steatosis before transplantation is typically based on a qualitative or semiquantitative characterization by visual inspection and palpation and histological analysis. Thus, there is an unmet need for transplantation surgeons to have access to a diagnostic tool enabling an in situ fast classification of grafts prior to extraction. In this study, we have assessed an attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic method compatible with the requirements of an operation room for the evaluation of the lipid contents in human livers. A set of 20 human liver biopsies obtained from organs intended for transplantation were analyzed by expert pathologists, ATR-FTIR spectroscopy, lipid biochemical analysis, and UPLC-ESI(+/-)TOFMS for lipidomic profiling. Comparative analysis of multisource data showed strong correlations between ATR-FTIR, clinical, and lipidomic information. Results show that ATR-FTIR captures a global picture of the lipid composition of the liver, along with information for the quantification of the triradylglycerol content in liver biopsies. Although the methodology performance needs to be further validated, results support the applicability of ATR-FTIR for the in situ determination of the grade of liver steatosis at the operation room as a fast, quantitative method, as an alternative to the qualitative and subjective pathological examination.


Subject(s)
Liver Transplantation , Operating Rooms , Spectrophotometry, Infrared/methods , Humans , Time Factors
7.
Ann Transl Med ; 8(8): 566, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32775367

ABSTRACT

The only curative treatment for severe end-stage liver disease (ESLD) is liver transplantation (LT) but it is limited by the shortage of organ donors. The increase of the incidence of liver disease has led to develop new therapeutic approaches such as liver cell transplantation. Current challenges that limit a wider application of this therapy include a limited cell source and the poor engraftment in the host liver of cryopreserved hepatocytes after thawing. Induced pluripotent stem cells (iPSCs) that can be differentiated into hepatocyte-like cells (HLCs) are being widely explored as an alternative to human hepatocytes because of their unlimited proliferation capacity and their potential ability to avoid the immune system. Their large-scale production could provide a new tool to produce enough HLCs for treating patients with metabolic diseases, acute liver failure (ALF), those with ESLD or patients not considered for organ transplantation. In this review we discuss current challenges for generating differentiated cells compatible with human application as well as in-depth safety evaluation. This analysis highlights the uncertainties and deficiencies that should be addressed before their clinical use but also points out the potential benefits that will produce a great impact in the field of hepatology.

8.
Cytotherapy ; 22(2): 114-121, 2020 02.
Article in English | MEDLINE | ID: mdl-31987755

ABSTRACT

Clinical hepatocyte transplantation short-term efficacy has been demonstrated; however, some major limitations, mainly due to the shortage of organs, the lack of quality of isolated cells and the low cell engraftment after transplantation, should be solved for increasing its efficacy in clinical applications. Cellular stress during isolation causes an unpredictable loss of attachment ability of the cells, which can be aggravated by cryopreservation and thawing. In this work, we focused on the use of a Good Manufacturing Practice (GMP) solution compared with the standard cryopreservation medium, the University of Wisconsin medium, for the purpose of improving the functional quality of cells and their ability to engraft in vivo, with the idea of establishing a biobank of cryopreserved human hepatocytes available for their clinical use. We evaluated not only cell viability but also specific hepatic function indicators of the functional performance of the cells such as attachment efficiency, ureogenic capability, phase I and II enzymes activities and the expression of specific adhesion molecules in vitro. Additionally, we also assessed and compared the in vivo efficacy of human hepatocytes cryopreserved in different media in an animal model of acute liver failure. Human hepatocytes cryopreserved in the new GMP solution offered better in vitro and in vivo functionality compared with those cryopreserved in the standard medium. Overall, the results indicate that the new tested GMP solution maintains better hepatic functions and, most importantly, shows better results in vivo, which could imply an increase in long-term efficacy when used in patients.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Hepatocytes/transplantation , Liver Failure, Acute/therapy , Animals , Cell Adhesion Molecules/metabolism , Cell Separation , Cell Survival , Disease Models, Animal , Hepatocytes/cytology , Humans , Liver/cytology , Liver/pathology , Male , Mice , Tissue Banks
9.
Methods Mol Biol ; 1506: 17-42, 2017.
Article in English | MEDLINE | ID: mdl-27830543

ABSTRACT

Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.


Subject(s)
Cell Differentiation , Cell Transplantation/methods , Cryopreservation/methods , Hepatocytes/transplantation , Liver Diseases/surgery , Stem Cells/physiology , Adolescent , Adult , Aged , Cell Transplantation/trends , Child , Child, Preschool , Clinical Trials as Topic , Female , Fetus/cytology , Hepatocytes/physiology , Humans , Infant , Infant, Newborn , Liver/cytology , Liver/metabolism , Liver Transplantation/methods , Male , Middle Aged , Tissue Donors , Waiting Lists/mortality , Young Adult
10.
Transplantation ; 100(12): 2548-2557, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27495745

ABSTRACT

The worldwide shortage of donor livers for organ and hepatocyte transplantation has prompted the search for alternative therapies for intractable liver diseases. Cell-based therapy is envisaged as a useful therapeutic option to recover and stabilize the lost metabolic function for acute liver failure, end-stage and congenital liver diseases, or for those patients who are not considered eligible for organ transplantation. In recent years, research to identify alternative and reliable cell sources for transplantation that can be derived by reproducible methods has been encouraged. Human pluripotent stem cells (PSCs), which comprise both embryonic and induced PSCs, may offer many advantages as an alternative to hepatocytes for liver cell therapy. Their capacity for expansion, hepatic differentiation and self-renewal make them a promising source of unlimited numbers of hepatocyte-like cells for treating and repairing damaged livers. Immunogenicity and tumorigenicity of human PSCs remain the bottleneck for successful clinical application. However, recent advances made to develop disease-corrected hepatocyte-like cells from patients' human-induced PSCs by gene editing have opened up many potential gateways for the autologous treatment of hereditary liver diseases, which may likely reduce the risk of rejection and the need for lifelong immunosuppression. Well-defined methods to reduce the expression of oncogenic genes in induced PSCs, including protocols for their complete and safe hepatic differentiation, should be established to minimize the tumorigenicity of transplanted cells. On top of this, such new strategies are currently being rigorously tested and validated in preclinical studies before they can be safely transferred to clinical practice with patients.


Subject(s)
Liver Diseases/therapy , Pluripotent Stem Cells/cytology , Amnion/cytology , Animals , Cell Differentiation , Cell Survival , Cell Transplantation , Cell- and Tissue-Based Therapy/methods , Disease Progression , Embryonic Stem Cells/cytology , End Stage Liver Disease/therapy , Gene Editing , Hematopoietic Stem Cells/cytology , Hepatocytes/cytology , Humans , Immunosuppression Therapy , Liver/metabolism , Liver/pathology , Liver Cirrhosis/therapy , Mesenchymal Stem Cells/cytology
13.
Liver Transpl ; 21(6): 801-11, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25821167

ABSTRACT

Crigler-Najjar type 1 disease is a rare inherited metabolic disease characterized by high levels of unconjugated bilirubin due to the complete absence of hepatic uridine diphosphoglucuronate-glucuronosyltransferase activity. Hepatocyte transplantation (HT) has been proposed as an alternative treatment for Crigler-Najjar syndrome, but it is still limited by the quality and the low engraftment and repopulation ability of the cells used. Because of their attachment capability and expression of adhesion molecules as well as the higher proportion of hepatic progenitor cells, neonatal hepatocytes may have an advantage over adult cells. Adult or neonatal hepatocytes were transplanted into Gunn rats, a model for Crigler-Najjar disease. Engraftment and repopulation were studied and compared by immunofluorescence (IF). Additionally, the serum bilirubin levels, the presence of bilirubin conjugates in rat serum, and the expression of uridine diphosphate glucuronosyltransferase 1 family polypeptide A1 (UGT1A1) in rat liver samples were also analyzed. Here we show that neonatal HT results in long-term correction in Gunn rats. In comparison with adult cells, neonatal cells showed better engraftment and repopulation capability 3 days and 6 months after transplantation, respectively. Bilirubinemia decreased in the transplanted animals during the whole experimental follow-up (6 months). Bilirubin conjugates were also present in the serum of the transplanted animals. Western blots and IF confirmed the presence and expression of UGT1A1 in the liver. This work is the first to demonstrate the advantage of using neonatal hepatocytes for the treatment of Crigler-Najjar in vivo.


Subject(s)
Crigler-Najjar Syndrome/therapy , Hepatocytes/transplantation , Liver Regeneration , Aged , Aged, 80 and over , Animals , Bilirubin/blood , Cell Proliferation , Female , Glucuronosyltransferase/metabolism , Humans , Infant, Newborn , Liver/metabolism , Male , Middle Aged , Propranolol , Rats, Gunn
14.
Liver Transpl ; 21(1): 38-46, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25204890

ABSTRACT

Early allograft dysfunction (EAD) dramatically influences graft and patient outcomes. A lack of consensus on an EAD definition hinders comparisons of liver transplant outcomes and management of recipients among and within centers. We sought to develop a model for the quantitative assessment of early allograft function [Model for Early Allograft Function Scoring (MEAF)] after transplantation. A retrospective study including 1026 consecutive liver transplants was performed for MEAF score development. Multivariate data analysis was used to select a small number of postoperative variables that adequately describe EAD. Then, the distribution of these variables was mathematically modeled to assign a score for each actual variable value. A model, based on easily obtainable clinical parameters (ie, alanine aminotransferase, international normalized ratio, and bilirubin) and scoring liver function from 0 to 10, was built. The MEAF score showed a significant association with patient and graft survival at 3-, 6- and 12-month follow-ups. Hepatic steatosis and age for donors; cold/warm ischemia times and postreperfusion syndrome for surgery; and intensive care unit and hospital stays, Model for End-Stage Liver Disease and Child-Pugh scores, body mass index, and fresh frozen plasma transfusions for recipients were factors associated significantly with EAD. The model was satisfactorily validated by its application to an independent set of 200 patients who underwent liver transplantation at a different center. In conclusion, a model for the quantitative assessment of EAD severity has been developed and validated for the first time. The MEAF provides a more accurate graft function assessment than current categorical classifications and may help clinicians to make early enough decisions on retransplantation benefits. Furthermore, the MEAF score is a predictor of recipient and graft survival. The standardization of the criteria used to define EAD may allow reliable comparisons of recipients' treatments and transplant outcomes among and within centers.


Subject(s)
Decision Support Techniques , Liver Transplantation/adverse effects , Models, Biological , Primary Graft Dysfunction/diagnosis , Alanine Transaminase/blood , Bayes Theorem , Bilirubin/blood , Biomarkers/blood , Blood Coagulation , Clinical Enzyme Tests , Graft Survival , Humans , International Normalized Ratio , Liver Transplantation/mortality , Multivariate Analysis , Nonlinear Dynamics , Predictive Value of Tests , Primary Graft Dysfunction/blood , Primary Graft Dysfunction/etiology , Primary Graft Dysfunction/mortality , Principal Component Analysis , Proportional Hazards Models , Reproducibility of Results , Retrospective Studies , Risk Factors , Severity of Illness Index , Time Factors , Treatment Outcome
16.
J Hepatol ; 61(3): 564-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24798621

ABSTRACT

BACKGROUND & AIMS: Early allograft dysfunction (EAD) dramatically influences graft and patient outcome after orthotopic liver transplantation and its incidence is strongly determined by donor liver quality. Nevertheless, objective biomarkers, which can assess graft quality and anticipate organ function, are still lacking. This study aims to investigate whether there is a preoperative donor liver metabolomic biosignature associated with EAD. METHODS: A comprehensive metabolomic profiling of 124 donor liver biopsies collected before transplantation was performed by mass spectrometry coupled to liquid chromatography. Donor liver grafts were classified into two groups: showing EAD and immediate graft function (IGF). Multivariate data analysis was used to search for the relationship between the metabolomic profiles present in donor livers before transplantation and their function in recipients. RESULTS: A set of liver graft dysfunction-associated biomarkers was identified. Key changes include significantly increased levels of bile acids, lysophospholipids, phospholipids, sphingomyelins and histidine metabolism products, all suggestive of disrupted lipid homeostasis and altered histidine pathway. Based on these biomarkers, a predictive EAD model was built and further evaluated by assessing 24 independent donor livers, yielding 91% sensitivity and 82% specificity. The model was also successfully challenged by evaluating donor livers showing primary non-function (n=4). CONCLUSIONS: A metabolomic biosignature that accurately differentiates donor livers, which later showed EAD or IGF, has been deciphered. The remarkable metabolomic differences between donor livers before transplant can relate to their different quality. The proposed metabolomic approach may become a clinical tool for donor liver quality assessment and for anticipating graft function before transplant.


Subject(s)
Graft Rejection/epidemiology , Graft Rejection/physiopathology , Liver Transplantation , Liver/metabolism , Metabolomics/methods , Tissue Donors , Allografts , Bile Acids and Salts/metabolism , Biomarkers/metabolism , Biopsy , Female , Histidine/metabolism , Humans , Liver/pathology , Liver/physiopathology , Lysophospholipids/metabolism , Male , Middle Aged , Phospholipids/metabolism , Predictive Value of Tests , Risk Factors , Sphingomyelins/metabolism
19.
Cir. Esp. (Ed. impr.) ; 92(2): 74-81, feb. 2014. ilus, tab
Article in Spanish | IBECS | ID: ibc-119300

ABSTRACT

Existe un gran número de enfermedades hepáticas para las cuales el único tratamiento efectivo es el trasplante hepático. La disparidad entre el número de potenciales beneficiarios y de órganos disponibles motiva la búsqueda de nuevas alternativas de tratamiento, entre las que se encuentra el trasplante celular hepático (TCH). Esta terapia representa una alternativa de tratamiento en estos pacientes, sin embargo, la falta de unanimidad de criterios respecto a las indicaciones y técnica, los diferentes protocolos de criopreservación así como la distinta metodología para valorar la respuesta a esta terapia pone de manifiesto la necesidad de una conferencia de consenso que unifique criterios, planteando posibles estrategias futuras que mejoren la técnica y optimicen los resultados. Nuestro objetivo es realizar una revisión y puesta al día del estado actual del TCH, enfatizando las futuras líneas de investigación que tratan de solucionar los problemas y mejorar los resultados de esta terapia


The imbalance between the number of potential beneficiaries and available organs, originates the search for new therapeutic alternatives, such as Hepatocyte transplantation (HT).Even though this is a treatment option for these patients, the lack of unanimity of criteria regarding indications and technique, different cryopreservation protocols, as well as the different methodology to assess the response to this therapy, highlights the need of a Consensus Conference to standardize criteria and consider future strategies to improve the technique and optimize the results. Our aim is to review and update the current state of hepatocyte transplantation, emphasizing the future research attempting to solve the problems and improve the results of this treatment


Subject(s)
Humans , Hepatocytes/transplantation , Liver Transplantation/methods , Metabolism, Inborn Errors/complications , Cryopreservation/methods , Preoperative Care/methods , Induced Pluripotent Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...