Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(37): 10914-10923, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34491063

ABSTRACT

This work establishes that static contact angles for gallium-based liquid metals have no utility despite the continued and common use of such angles in the literature. In the presence of oxygen, these metals rapidly form a thin (∼1-3 nm) surface oxide "skin" that adheres to many surfaces and mechanically impedes its flow. This property is problematic for contact angle measurements, which presume the ability of liquids to flow freely to adopt shapes that minimize the interfacial energy. We show here that advancing angles for a metal are always high (>140°)-even on substrates to which it adheres-because the solid native oxide must rupture in tension to advance the contact line. The advancing angle for the metal depends subtly on the substrate surface chemistry but does not vary strongly with hydrophobicity of the substrate. During receding measurements, the metal droplet initially sags as the liquid withdraws from the "sac" formed by the skin and thus the contact area with the substrate initially increases despite its volumetric recession. The oxide pins at the perimeter of the deflated "sac" on all the surfaces are tested, except for certain rough surfaces. With additional withdrawal of the liquid metal, the pinned angle gets smaller until eventually the oxide "sac" collapses. Thus, static contact angles can be manipulated mechanically from 0° to >140° due to hysteresis and are therefore uninformative. We also provide recommendations and best practices for wetting experiments, which may find use in applications that use these alloys such as soft electronics, composites, and microfluidics.

2.
Adv Sci (Weinh) ; 6(21): 1901579, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31728290

ABSTRACT

Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.

3.
Langmuir ; 35(36): 11774-11783, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31407902

ABSTRACT

Gallium and its alloys react with oxygen to form a native oxide that encapsulates the liquid metal with a solid "skin". The viscoelasticity of this skin is leveraged in applications such as soft electronics, 3D printing, and components for microfluidic devices. In these applications, rheological characterization of the oxide skin is paramount for understanding and controlling liquid metals. Here, we provide a direct comparison of the viscoelastic properties for gallium-based liquid metals and illustrate the effect of different subphases and addition of a dopant on the elastic nature of the oxide skin. The du Noüy ring method is used to investigate the interfacial rheology of oxide skins formed by gallium-based liquid metal alloys. The results show that the oxide layer on gallium, eutectic gallium-indium, and Galinstan are viscoelastic with a yield stress. Furthermore, the storage modulus of the oxide layer is affected by exposure to water or when small amounts of aluminum dopant are added to the liquid metals. The former scenario decreases the interfacial storage modulus of the gallium by 35-85% while the latter increases the interfacial storage modulus by 25-45%. The presence of water also changes the chemical composition of the oxide skin. Scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy suggest that a microstructural evolution of the interface occurs when aluminum preferentially migrates from the bulk to the surface. These studies provide guidance on selecting liquid metals as well as simple methods to optimize their rheological behavior for future applications.

4.
Sci Adv ; 5(2): eaat4600, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30801003

ABSTRACT

Tough, biological materials (e.g., collagen or titin) protect tissues from irreversible damage caused by external loads. Mimicking these protective properties is important in packaging and in emerging applications such as durable electronic skins and soft robotics. This paper reports the formation of tough, metamaterial-like core-shell fibers that maintain stress at the fracture strength of a metal throughout the strain of an elastomer. The shell experiences localized strain enhancements that cause the higher modulus core to fracture repeatedly, increasing the energy dissipated during extension. Normally, fractures are catastrophic. However, in this architecture, the fractures are localized to the core. In addition to dissipating energy, the metallic core provides electrical conductivity and enables repair of the fractured core for repeated use. The fibers are 2.5 times tougher than titin and hold more than 15,000 times their own weight for a period 100 times longer than a hollow elastomeric fiber.

5.
ACS Nano ; 12(6): 5482-5488, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29741864

ABSTRACT

Flexible and stretchable electronics are poised to enable many applications that cannot be realized with traditional, rigid devices. One of the most promising options for low-cost stretchable transistors are printed carbon nanotubes (CNTs). However, a major limiting factor in stretchable CNT devices is the lack of a stable and versatile contact material that forms both the interconnects and contact electrodes. In this work, we introduce the use of eutectic gallium-indium (EGaIn) liquid metal for electrical contacts to printed CNT channels. We analyze thin-film transistors (TFTs) fabricated using two different liquid metal deposition techniques-vacuum-filling polydimethylsiloxane (PDMS) microchannel structures and direct-writing liquid metals on the CNTs. The highest performing CNT-TFT was realized using vacuum-filled microchannel deposition with an in situ annealing temperature of 150 °C. This device exhibited an on/off ratio of more than 104 and on-currents as high as 150 µA/mm-metrics that are on par with other printed CNT-TFTs. Additionally, we observed that at room temperature the contact resistances of the vacuum-filled microchannel structures were 50% lower than those of the direct-write structures, likely due to the poor adhesion between the materials observed during the direct-writing process. The insights gained in this study show that stretchable electronics can be realized using low-cost and solely solution processing techniques. Furthermore, we demonstrate methods that can be used to electrically characterize semiconducting materials as transistors without requiring elevated temperatures or cleanroom processes.

6.
Adv Mater ; 29(30)2017 Aug.
Article in English | MEDLINE | ID: mdl-28590510

ABSTRACT

3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures.

7.
Lab Chip ; 16(10): 1812-20, 2016 05 21.
Article in English | MEDLINE | ID: mdl-27025537

ABSTRACT

This paper demonstrates a simple method to fabricate 3D microchannels and microvasculature at room temperature by direct-writing liquid metal as a sacrificial template. The formation of a surface oxide skin on the low-viscosity liquid metal stabilizes the shape of the printed metal for planar and out-of-plane structures. The printed structures can be embedded in a variety of soft (e.g. elastomeric) and rigid (e.g. thermoset) polymers. Both acid and electrochemical reduction are capable of removing the oxide skin that forms on the metal, which destabilizes the ink so that it withdraws from the encapsulating material due to capillary forces, resulting in nearly full recovery of the fugitive ink at room temperature. Whereas conventional fabrication procedures typically confine microchannels to 2D planes, the geometry of the printed microchannels can be varied from a simple 2D network to complex 3D architectures without using lithography. The method produces robust monolithic structures without the need for any bonding or assembling techniques that often limit the materials of construction of conventional microchannels. Removing select portions of the metal leaves behind 3D metal features that can be used as antennas, interconnects, or electrodes for interfacing with lab-on-a-chip devices. This paper describes the capabilities and limitations of this simple process.

SELECTION OF CITATIONS
SEARCH DETAIL
...