Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Acad Orthop Surg ; 29(16): e815-e819, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34106093

ABSTRACT

Biologically augmented surgical treatments of orthopaedic conditions are increasingly popular. Bone marrow aspirate concentrate is a key orthobiologic tissue source, and the field is moving from the standard iliac crest marrow aspiration toward local aspirations of marrow depots that are accessible during the standard-of-care procedures in an attempt to reduce morbidity, surgery time, and cost. Here, we present the aspiration of the standard iliac marrow depot, but through a novel acetabular approach during total hip arthroplasty. This procedure markedly simplifies biologic augmentation with bone marrow aspirate concentrate in this large patient cohort.


Subject(s)
Arthroplasty, Replacement, Hip , Bone Marrow , Acetabulum/surgery , Bone Marrow Cells , Humans , Ilium
2.
Am J Sports Med ; 49(5): 1313-1322, 2021 04.
Article in English | MEDLINE | ID: mdl-33646886

ABSTRACT

BACKGROUND: There is a need to identify and quantify mesenchymal stromal cells (MSCs) in human bone marrow aspirate concentrate (BMAC) source tissues, but current methods to do so were established in cultured cell populations. Given that surface marker and gene expression change in cultured cells, it is doubtful that these strategies are valid to quantify MSCs in fresh BMAC. PURPOSE: To establish the presence, quantity, and heterogeneity of BMAC-derived MSCs in minimally manipulated BMAC using currently available strategies. STUDY DESIGN: Descriptive laboratory study. METHODS: Five published strategies to identify MSCs were compared for suitability and efficiency to quantify clinical-grade BMAC-MSCs and cultured MSCs at the single cell transcriptome level on BMAC samples being used clinically from 15 orthopaedic patients and on 1 cultured MSC sample. Strategies included (1) the guidelines by the International Society for Cellular Therapy (ISCT), (2) CD271 expression, (3) the Ghazanfari et al transcriptional profile, (4) the Jia et al transcriptional profile, and (5) the Silva et al transcriptional profile. RESULTS: ISCT guidelines did not identify any MSCs in BMAC at the transcriptional level and only 1 in 9 million cells at the protein level. Of 12,850 BMAC cells, 9 expressed the CD271 gene. Only 116 of 396 Ghazanfari genes were detected in BMAC, whereas no cells expressed all of them. No cells expressed all Jia genes, but 25 cells expressed at least 13 of 22. No cells expressed all Silva genes, but 19 cells expressed at least 8 of 23. Most importantly, the liberalized strategies tended to identify different cells and most of them clustered with immune cells. CONCLUSION: Currently available methods need to be liberalized to identify any MSCs in fresh human BMAC and lack consensus at the single cell transcriptome and protein expression levels. These different cells should be isolated and challenged to establish phenotypic differences. CLINICAL RELEVANCE: This study demonstrated that improved strategies to quantify MSC concentrations in BMAC for clinical applications are urgently needed. Until then, injected minimally manipulated MSC doses should be reported as rough estimates or as unknown.


Subject(s)
Mesenchymal Stem Cells , Bone Marrow , Bone Marrow Cells , Bone Marrow Transplantation , Cells, Cultured , Consensus , Humans
3.
Arthroscopy ; 32(8): 1624-30, 2016 08.
Article in English | MEDLINE | ID: mdl-27056289

ABSTRACT

PURPOSE: To identify desired minimum depth setting for safe, effective placement of the all-inside meniscal suture anchors. METHODS: Using 16 cadaveric knees and standard arthroscopic techniques, 3-dimensional surfaces of the meniscocapsular junction and posterior capsule were digitized. Using standard anteromedial and anterolateral portals, the distance from the meniscocapsular junction to the posterior capsule outer wall was measured for 3 locations along the posterior half of medial and lateral menisci. Multiple all-inside meniscal repairs were performed on 7 knees to determine an alternate measure of capsular thickness (X2) and compared with the digitized results. RESULTS: In the digitized group, the distance (X1) from the capsular junction to the posterior capsular wall was averaged in both menisci for 3 regions using anteromedial and anterolateral portals. Mean distances of 6.4 to 8.8 mm were found for the lateral meniscus and 6.5 to 9.1 mm for the medial meniscus. The actual penetration depth was determined in the repair group and labeled X2. It showed a similar pattern to the variation seen in X1 by region, although it exceeded predicted distances an average 1.7 mm in the medial and 1.5 mm in the lateral meniscus owing to visible deformation of the capsule as it pierced. CONCLUSIONS: Capsular thickness during arthroscopic repair measures approximately 6 to 9 mm (X1), with 1.5 to 2 mm additional depth needed to ensure penetration rather than bulging of the posterior capsule (X2), resulting in 8 to 10 mm minimum penetration depth range. Surgeons can add desired distance away from the meniscocapsular junction (L) at device implantation, finding optimal minimal setting for penetration depth (X2 + L), which for most repairable tears may be as short as 8 mm and not likely to be greater than 16 mm. CLINICAL RELEVANCE: Minimum depth setting for optimal placement of all-inside meniscal suture anchors when performing all-inside repair of the medial or lateral meniscus reduces risk of harming adjacent structures secondary to overpenetration and underpenetration of the posterior capsule.


Subject(s)
Arthroscopy/methods , Knee Joint/surgery , Menisci, Tibial/surgery , Adult , Cadaver , Humans , Middle Aged , Suture Anchors , Suture Techniques/instrumentation , Wound Healing , Young Adult
4.
BMC Nurs ; 8: 6, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19583851

ABSTRACT

BACKGROUND: Hands-Only cardiopulmonary resuscitation (CPR) is recommended for use on adult victims of witnessed out-of-hospital (OOH) sudden cardiac arrest or in instances where rescuers cannot perform ventilations while maintaining minimally interrupted quality compressions. Promotion of Hands-Only CPR should improve the incidence of bystander CPR and, subsequently, survival from OOH cardiac arrest; but, little is known about a rescuer's ability to deliver continuous chest compressions of adequate rate and depth for periods typical of emergency services response time. This study evaluated chest compression rate and depth as subjects performed Hands-Only CPR for 10 minutes. For comparison purposes, each also performed chest compressions with ventilations (30:2) CPR. It also evaluated fatigue and changes in body biomechanics associated with each type of CPR. METHODS: Twenty healthy female volunteers certified in basic life support performed Hands-Only CPR and 30:2 CPR on a manikin. A mixed model repeated measures cross-over design evaluated chest compression rate and depth, changes in fatigue (chest compression force, perceived exertion, and blood lactate level), and changes in electromyography and joint kinetics and kinematics. RESULTS: All subjects completed 10 minutes of 30:2 CPR; but, only 17 completed 10 minutes of Hands-Only CPR. Rate, average depth, percentage at least 38 millimeters deep, and force of compressions were significantly lower in Hands-Only CPR than in 30:2 CPR. Rates were maintained; but, compression depth and force declined significantly from beginning to end CPR with most decrement occurring in the first two minutes. Perceived effort and joint torque changes were significantly greater in Hands-Only CPR. Performance was not influenced by age. CONCLUSION: Hands-Only CPR required greater effort and was harder to sustain than 30:2 CPR. It is not known whether the observed greater decrement in chest compression depth associated with Hands-Only CPR would offset the potential physiological benefit of having fewer interruptions in compressions during an actual resuscitation. The dramatic decrease in compression depth in the first two minutes reinforces current recommendations that rescuers take turns performing compressions, switching every two minutes or less. Further study is recommended to determine the impact of real-time feedback and dispatcher coaching on rescuer performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...