Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soc Cogn Affect Neurosci ; 18(1)2023 02 23.
Article in English | MEDLINE | ID: mdl-36264228

ABSTRACT

Jury decisions are among the most consequential social decisions in which bias plays a notable role. While courts take measures to reduce the influence of non-evidentiary factors, jurors may still incorporate biases into their decisions. One common bias, crime-type bias, is the extent to which the perceived strength of a prosecutor's case depends on the severity of the crime. Moral judgment, affect and social cognition have been proposed as core processes underlying this and other biases. Behavioral evidence alone has been insufficient to distinguish these explanations. To identify the mechanism underlying crime-type bias, we collected functional magnetic resonance imaging patterns of brain activation from mock jurors reading criminal scenarios. Brain patterns from crime-type bias were most similar to those associated with social cognition (mentalizing and racial bias) but not affect or moral judgment. Our results support a central role for social cognition in juror decisions and suggest that crime-type bias and cultural bias may arise from similar mechanisms.


Subject(s)
Decision Making , Judgment , Humans , Morals , Bias , Cognition , Criminal Law
2.
Cereb Cortex ; 32(6): 1131-1141, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34398230

ABSTRACT

Self-reflection and thinking about the thoughts and behaviors of others are important skills for humans to function in the social world. These two processes overlap in terms of the component processes involved, and share overlapping functional organizations within the human brain, in particular within the medial prefrontal cortex (MPFC). Several functional models have been proposed to explain these two processes, but none has directly explored the extent to which they are distinctly represented within different parts of the brain. This study used multivoxel pattern classification to quantify the separability of self- and other-related thought in the MPFC and expanded this question to the entire brain. Using a large-scale mega-analytic dataset, spanning three separate studies (n = 142), we find that self- and other-related thought can be reliably distinguished above chance within the MPFC, posterior cingulate cortex and temporal lobes. We highlight subcomponents of the ventral MPFC that are particularly important in representing self-related thought, and subcomponents of the orbitofrontal cortex robustly involved in representing other-related thought. Our findings indicate that representations of self- and other-related thought in the human brain are described best by a distributed pattern rather than stark localization or a purely ventral to dorsal linear gradient in the MPFC.


Subject(s)
Brain , Prefrontal Cortex , Brain/diagnostic imaging , Brain Mapping , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Prefrontal Cortex/diagnostic imaging , Self Concept , Temporal Lobe
3.
J Neurosci ; 42(40): 7624-7633, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36658459

ABSTRACT

Efforts to explain complex human decisions have focused on competing theories emphasizing utility and narrative mechanisms. These are difficult to distinguish using behavior alone. Both narrative and utility theories have been proposed to explain juror decisions, which are among the most consequential complex decisions made in a modern society. Here, we asked jury-eligible male and female subjects to rate the strength of a series of criminal cases while recording the resulting patterns of brain activation. We compared patterns of brain activation associated with evidence accumulation to patterns of brain activation derived from a large neuroimaging database to look for signatures of the cognitive processes associated with different models of juror decision-making. Evidence accumulation correlated with multiple narrative processes, including reading and recall. Of the cognitive processes traditionally viewed as components of utility, activation patterns associated with uncertainty, but not value, were more active with stronger evidence. Independent of utility and narrative, activations linked to reasoning and relational logic also correlated with increasing evidence. Hierarchical modeling of cognitive processes associated with evidence accumulation supported a more prominent role for narrative in weighing evidence in complex decisions. However, utility processes were also associated with evidence accumulation. These complementary findings support an emerging view that integrates utility and narrative processes in complex decisions.SIGNIFICANCE STATEMENT The last decade has seen a sharply increased interest in narrative as a central cognitive process in human decision-making and as an important factor in the evolution of human societies. However, the roles of narrative versus utility models of decision-making remain hotly debated. While available models frequently produce similar behavioral predictions, they rely on different cognitive processes and so their roles can be separated using the right neural tests. Here, we use brain imaging during mock juror decisions to show that cognitive processes associated with narrative, and to a lesser extent utility, were engaged while subjects evaluated evidence. These results are consistent with interactions between narrative and utility processes during complex decision-making.


Subject(s)
Brain , Decision Making , Humans , Male , Female , Decision Making/physiology , Uncertainty , Brain/diagnostic imaging , Brain/physiology , Problem Solving , Mental Recall
4.
Proc Natl Acad Sci U S A ; 117(46): 28552-28554, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139562

Subject(s)
Attitude
5.
Autism Res Treat ; 2019: 5469191, 2019.
Article in English | MEDLINE | ID: mdl-31354993

ABSTRACT

Few studies have explored neural mechanisms of reward learning in ASD despite evidence of behavioral impairments of predictive abilities in ASD. To investigate the neural correlates of reward prediction errors in ASD, 16 adults with ASD and 14 typically developing controls performed a prediction error task during fMRI scanning. Results revealed greater activation in the ASD group in the left paracingulate gyrus during signed prediction errors and the left insula and right frontal pole during thresholded unsigned prediction errors. Findings support atypical neural processing of reward prediction errors in ASD in frontostriatal regions critical for prediction coding and reward learning. Results provide a neural basis for impairments in reward learning that may contribute to traits common in ASD (e.g., intolerance of unpredictability).

SELECTION OF CITATIONS
SEARCH DETAIL
...