Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36010852

ABSTRACT

There is a great need for non-invasive tools that inform of an early molecular response to cancer therapeutic treatment. Here, we tested the hypothesis that proteolytically resistant proteins could be candidate circulating tumor biomarkers for cancer therapy. Proteins resistant to proteolysis are drastically under-sampled by current proteomic workflows. These proteins could be reliable sensors for the response to therapy since they are likely to stay longer in circulation. We selected manganese superoxide dismutase (SOD2), a mitochondrial redox enzyme, from a screening of proteolytic resistant proteins in breast cancer (BC). First, we confirmed the robustness of SOD2 and determined that its proteolytic resistance is mediated by its quaternary protein structure. We also proved that the release of SOD2 upon chemotherapy treatment correlates with cell death in BC cells. Then, after confirming that SOD2 is very stable in human serum, we sought to measure its circulating levels in a cohort of BC patients undergoing neoadjuvant therapy. The results showed that circulating levels of SOD2 increased when patients responded to the treatment according to the tumor shrinkage during neoadjuvant chemotherapy. Therefore, the measurement of SOD2 levels in plasma could improve the non-invasive monitoring of the therapeutic treatment in breast cancer patients. The identification of circulating biomarkers linked to the tumor cell death induced by treatment could be useful for monitoring the action of the large number of cancer drugs currently used in clinics. We envision that our approach could help uncover candidate tumor biomarkers to measure a tumor's response to cancer therapy in real time by sampling the tumor throughout the course of treatment.

2.
Clin Cancer Res ; 28(1): 137-149, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34593528

ABSTRACT

PURPOSE: FGFR1 amplification (FGFR1amp) is recurrent in metastatic breast cancer (MBC) and is associated with resistance to endocrine therapy and CDK4/6 inhibitors (CDK4/6is). Multi-tyrosine kinase inhibitors (MTKIs) and selective pan-FGFR inhibitors (FGFRis) are being developed for FGFR1amp breast cancer. High-level FGFR amplification and protein expression by IHC have identified breast cancer responders to FGFRis or MTKIs, respectively. EXPERIMENTAL DESIGN: Here, we used preclinical models and patient samples to identify predictive biomarkers to these drugs. We evaluated the antitumor activity of an FGFRi and an MTKI in a collection of 17 breast cancer patient-derived xenografts (PDXs) harboring amplification in FGFR1/2/3/4 and in 10 patients receiving either an FGFRi/MTKI. mRNA levels were measured on FFPE tumor samples using two commercial strategies. Proliferation and angiogenesis were evaluated by detecting Ki-67 and CD31 in viable areas by immunofluorescence. RESULTS: High FGFR1-4 mRNA levels but not copy-number alteration (CNA) is associated with FGFRi response. Treatment with MTKIs showed higher response rates than with FGFRis (86% vs. 53%), regardless of the FGFR1-4 mRNA levels. FGFR-addicted PDXs exhibited an antiproliferative response to either FGFRis or MTKIs, and PDXs exclusively sensitive to MTKI exhibited an additional antiangiogenic response. Consistently, the clinical benefit of MTKIs was not associated with high FGFR1-4 mRNA levels and was observed in patients previously treated with antiangiogenic drugs. CONCLUSIONS: Tailored therapy with FGFRis in molecularly selected MBC based on high FGFR1-4 mRNA levels warrants prospective validation in patients with CDK4/6i-resistant luminal breast cancer and in patients with TNBC without targeted therapeutic options.


Subject(s)
Breast Neoplasms , RNA, Messenger , Receptor Protein-Tyrosine Kinases , Female , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
3.
Br J Cancer ; 124(9): 1581-1591, 2021 04.
Article in English | MEDLINE | ID: mdl-33723394

ABSTRACT

BACKGROUND: Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance. METHODS: Resistance to eribulin was evaluated in HER2- BC cell lines and patient-derived tumour xenografts, and correlated with a mutation in the PI3K/AKT pathway. RESULTS: Eleven out of 23 HER2- BC xenografts treated with eribulin exhibited disease progression. No correlation with ER status was detected. Among the resistant models, 64% carried mutations in PIK3CA, PIK3R1 or AKT1, but only 17% among the sensitive xenografts (P = 0.036). We observed that eribulin treatment induced AKT phosphorylation in vitro and in patient tumours. In agreement, the addition of PI3K inhibitors reversed primary and acquired resistance to eribulin in xenograft models, regardless of the genetic alterations in PI3K/AKT pathway or ER status. Mechanistically, PI3K blockade reduced p21 levels likely enabling apoptosis, thus sensitising to eribulin treatment. CONCLUSIONS: PI3K pathway activation induces primary resistance or early adaptation to eribulin, supporting the combination of PI3K inhibitors and eribulin for the treatment of HER2- BC patients.


Subject(s)
Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm , Furans/pharmacology , Ketones/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism , Animals , Apoptosis , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Cell Cycle , Cell Proliferation , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Clin Cancer Res ; 26(14): 3720-3731, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32220884

ABSTRACT

PURPOSE: AZD5363/capivasertib is a pan-AKT catalytic inhibitor with promising activity in combination with paclitaxel in triple-negative metastatic breast cancer harboring PI3K/AKT-pathway alterations and in estrogen receptor-positive breast cancer in combination with fulvestrant. Here, we aimed to identify response biomarkers and uncover mechanisms of resistance to AZD5363 and its combination with paclitaxel. EXPERIMENTAL DESIGN: Genetic and proteomic markers were analyzed in 28 HER2-negative patient-derived xenografts (PDXs) and in patient samples, and correlated to AZD5363 sensitivity as single agent and in combination with paclitaxel. RESULTS: Four PDX were derived from patients receiving AZD5363 in the clinic which exhibited concordant treatment response. Mutations in PIK3CA/AKT1 and absence of mTOR complex 1 (mTORC1)-activating alterations, for example, in MTOR or TSC1, were associated with sensitivity to AZD5363 monotherapy. Interestingly, excluding PTEN from the composite biomarker increased its accuracy from 64% to 89%. Moreover, resistant PDXs exhibited low baseline pAKT S473 and residual pS6 S235 upon treatment, suggesting that parallel pathways bypass AKT/S6K1 signaling in these models. We identified two mechanisms of acquired resistance to AZD5363: cyclin D1 overexpression and loss of AKT1 p.E17K. CONCLUSIONS: This study provides insight into putative predictive biomarkers of response and acquired resistance to AZD5363 in HER2-negative metastatic breast cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/genetics , Breast Neoplasms/therapy , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast/pathology , Breast/surgery , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chemotherapy, Adjuvant/methods , Class I Phosphatidylinositol 3-Kinases/genetics , DNA Mutational Analysis , Female , Humans , Mastectomy , Mice , Mutation , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Prognosis , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/genetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Xenograft Model Antitumor Assays
5.
Stroke ; 46(2): 477-84, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25503547

ABSTRACT

BACKGROUND AND PURPOSE: Despite the effectiveness of recombinant tissue-type plasminogen activator (r-tPA) during the acute phase of ischemic stroke, the therapy remains limited by a narrow time window and the occurrence of occasional vascular side effects, particularly symptomatic hemorrhages. Our aim was to investigate the mechanisms underlying the endothelial damage resulting from r-tPA treatment in ischemic-like conditions. METHODS: Microarray analyses were performed on cerebral endothelial cells submitted to r-tPA treatment during oxygen and glucose deprivation to identify novel biomarker candidates. Validation was then performed in vivo in a mouse model of thromboembolic stroke and culminated in an analysis in a clinical cohort of patients with ischemic stroke treated with thrombolysis. RESULTS: The transcription factor NURR1 (NR4A2) was identified as a downstream target induced by r-tPA during oxygen and glucose deprivation. Silencing NURR1 expression reversed the endothelial-toxicity induced by the combined stimuli, a protective effect attributable to reduced levels of proinflammatory mediators, such as nuclear factor-kappa-beta 2 (NF-κ-B2), interleukin 1 alpha (IL1α), intercellular adhesion molecule 1 (ICAM1), SMAD family member 3 (SMAD3), colony stimulating factor 2 (granulocyte-macrophage; CSF2). The detrimental effect of delayed thrombolysis, in conditions in which NURR1 gene expression was enhanced, was confirmed in the preclinical stroke model. Finally, we determined that patients with stroke who had a symptomatic hemorrhagic transformation after r-tPA treatment exhibited higher baseline serum NURR1 levels than did patients with an asymptomatic or absence of cerebral bleedings. CONCLUSIONS: Our results suggest that NURR1 upregulation by r-tPA during ischemic stroke is associated with endothelial dysfunction and inflammation and the enhancement of hemorrhagic complications associated to thrombolysis.


Subject(s)
Brain Ischemia/blood , Brain Ischemia/drug therapy , Nuclear Receptor Subfamily 4, Group A, Member 2/blood , Stroke/blood , Stroke/drug therapy , Tissue Plasminogen Activator/therapeutic use , Aged , Aged, 80 and over , Animals , Biomarkers/blood , Brain Ischemia/diagnosis , Cell Line , Female , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/therapeutic use , Humans , Inflammation/blood , Inflammation/chemically induced , Inflammation/diagnosis , Male , Mice , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 2/biosynthesis , Stroke/diagnosis , Tissue Plasminogen Activator/adverse effects , Treatment Outcome
6.
Neurobiol Aging ; 32(3): 551.e13-22, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20381197

ABSTRACT

Cerebral amyloid angiopathy (CAA) is a well-established cause of lobar intracerebral hemorrhage (ICH). The aim of the authors was to investigate the influence of clinical characteristics and genetic variants in the ACE, LRP, MMP9, Tafi, VEGFA, CYP11B2, A2M and APOE on ICH recurrence in a cohort of CAA-related ICH patients. Sixty patients were enrolled and new symptomatic ICHs in the 36 mo following the index event were recorded. Leukoaraiosis degree, microbleeds count and variants in the APOE and ACE were associated with ICH recurrence. The rs4311 variant of the ACE was an independent risk factor (p = 0.001), resisting Bonferroni correction. Moreover, carriers of ε2 of the APOE and TT of the rs4311 of the ACE reached 100% recurrence before 18 mo (p < 0.001). Finally, ACE protein level was measured in serum of controls and depended on the rs4311 genotypes, TT carriers presenting higher level than CC carriers (p = 0.012). These results suggest that variants in the ACE are associated with CAA-related ICH recurrence, possibly by modulating ACE protein level.


Subject(s)
Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/genetics , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/genetics , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic/genetics , Aged , Aged, 80 and over , Analysis of Variance , Apolipoproteins E/genetics , Cerebral Amyloid Angiopathy/diagnosis , Cerebral Amyloid Angiopathy/epidemiology , Cerebral Hemorrhage/enzymology , Cerebral Hemorrhage/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Female , Genome-Wide Association Study/methods , Humans , Kaplan-Meier Estimate , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Peptidyl-Dipeptidase A/blood , Recurrence , Risk Factors
7.
J Biol Chem ; 285(35): 27144-27158, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20576603

ABSTRACT

Patients carrying mutations within the amyloid-beta (Abeta) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Abeta synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AbetaE22Q and AbetaL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Abeta peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Abeta-(1-16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Abeta degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Abeta peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AbetaE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Abeta species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype.


Subject(s)
Amino Acid Substitution , Amyloid beta-Peptides/pharmacology , Brain/enzymology , Endothelial Cells/enzymology , Matrix Metalloproteinase 2/biosynthesis , Peptides/pharmacokinetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/enzymology , Brain/pathology , Endothelial Cells/pathology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/genetics , Gene Silencing , Humans , Intracranial Hemorrhages/enzymology , Intracranial Hemorrhages/metabolism , Intracranial Hemorrhages/pathology , Matrix Metalloproteinase 2/genetics , Mutation, Missense , Peptides/genetics , Peptides/metabolism
8.
Stroke ; 41(7): 1528-35, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20538694

ABSTRACT

BACKGROUND AND PURPOSE: Vascular adhesion protein-1 (VAP-1) is a cell surface and circulating enzyme involved in recruitment of lymphocytes and neutrophils through its semicarbazide-sensitive amine oxidase (SSAO) activity. We aimed to study plasma VAP-1/SSAO activity in relation to the risk for intracranial bleeding complications in patients with stroke treated with tissue plasminogen activator (tPA), the greatest safety concern with this treatment. METHODS: In 141 patients with ischemic stroke, we measured VAP-1/SSAO activity in plasma taken before tPA administration. Hemorrhagic events were classified according to brain CT criteria and functional outcomes evaluated using the National Institutes of Health Stroke Scale. We also assessed the potential therapeutic effect of blocking VAP-1/SSAO activity in a rat embolic stroke model treated with tPA. RESULTS: We saw significantly higher levels of plasma VAP-1/SSAO activity in patients who subsequently experienced hemorrhagic transformation. Elevated plasma VAP-1/SSAO activity also predicted worse neurological outcome in these patients. In the rat model, we confirmed that use of the inhibitor semicarbazide prevented adverse effects caused by delayed tPA administration, leading to a smaller infarct volume. CONCLUSIONS: Our data demonstrate that baseline VAP-1/SSAO activity predicts parenchymal hemorrhage after tPA, suggesting the safety of thrombolytic agents could be improved by considering VAP-1/SSAO activity. Furthermore, anti-VAP-1/SSAO drugs given with tPA may prevent neurological worsening in patients with ischemic stroke.


Subject(s)
Amine Oxidase (Copper-Containing)/blood , Cell Adhesion Molecules/blood , Intracranial Hemorrhages/enzymology , Nervous System Diseases/enzymology , Stroke/enzymology , Tissue Plasminogen Activator/adverse effects , Aged , Aged, 80 and over , Animals , Biomarkers/blood , Enzyme Activation/drug effects , Enzyme Activation/physiology , Female , Humans , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/etiology , Male , Middle Aged , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , Predictive Value of Tests , Prospective Studies , Rats , Rats, Sprague-Dawley , Stroke/complications , Stroke/drug therapy , Treatment Outcome
9.
J Neurosci Res ; 87(9): 2115-25, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19235898

ABSTRACT

The neuropathology of Alzheimer's disease (AD) is accompanied by an inflammatory response that includes neurodegeneration and glial reactivity. Tissue remodeling proteins, such as matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs), are inflammatory mediators that might play a dual role in the AD brain. We aimed to investigate the effects of beta-amyloid (Abeta) on the MMP-9/TIMP-1 balance and its involvement in Abeta toxicity in neurons and glial cells. Our results demonstrate that the neurotoxic 25-35 Abeta fragment induces the activation of MMP-9 and the increase of proMMP-2/9 secretion and promotes the release of TIMP-1 in a mixed cortical neuroglial culture. The same treatments performed in pure neuronal or astrocytic cultures confirm that astroglial cells are the major source of MMP-9, whereas increased TIMP-1 levels have a neuronal origin. Moreover, 25-35 Abeta fragment not only induced a release of these molecules but also caused expressional changes in MMP-9 and TIMP-1, correlated with the neurotoxicity process. We also show that TIMP-1 promoted cell proliferation in a mixed neuroglial culture, and we confirm this effect in primary cultured astrocytes induced by rTIMP-1 and 25-35 Abeta. Because the proliferative effect caused by Abeta 25-35 was enhanced by the presence of TIMP-1, we suggest that the astroglial reactivity induced by chronic exposure of the peptide might be mediated in part by TIMP-1, which is secreted mainly by injured neurons. In conclusion, our data suggest that the Abeta 25-35 fragment stimulates the MMP-9-TIMP-1 pathway, promoting gliosis, in a self-defensive attempt to eliminate amyloid deposition from AD brains.


Subject(s)
Amyloid beta-Peptides/metabolism , Astrocytes/enzymology , Gliosis/enzymology , Matrix Metalloproteinase 9/metabolism , Neurons/enzymology , Peptide Fragments/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Alzheimer Disease/enzymology , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/toxicity , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Communication/drug effects , Cell Communication/physiology , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Drug Synergism , Encephalitis/enzymology , Encephalitis/physiopathology , Gliosis/chemically induced , Gliosis/physiopathology , Neurons/drug effects , Neurons/metabolism , Peptide Fragments/toxicity , Plaque, Amyloid/metabolism , Rats , Rats, Sprague-Dawley , Tissue Inhibitor of Metalloproteinase-1/pharmacology
10.
J Hepatol ; 39(4): 515-21, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12971960

ABSTRACT

BACKGROUND/AIMS: Cirrhotic livers exhibit endothelial dysfunction that contributes to the increased hepatic vascular resistance. The present study evaluates the role of cyclooxygenase (COX)-derived prostanoids, implicated in the pathogenesis of endothelial dysfunction in other settings, in the pathogenesis of endothelial dysfunction in cirrhotic livers. METHODS: Endothelial dysfunction was evaluated by performing concentration-effect curves to acetylcholine after precontracting the liver with methoxamine in groups of control and CCl(4)-cirrhotic rat livers preincubated either with vehicle, indomethacin, the COX-1 selective inhibitor, SC-560, the COX-2 selective inhibitor, SC-236, the thromboxane A(2) receptor antagonist, SQ 29,548 or the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine. Thromboxane A(2) (TXA(2)) production was determined in samples of the perfusate. RESULTS: Cirrhotic livers exhibited endothelial dysfunction, as shown by the significantly lower relaxation to acetylcholine than control livers, that was totally corrected by indomethacin. COX-1 inhibition and TXA(2) blockade, but not COX-2 inhibition, also corrected endothelial dysfunction. Acetylcholine significantly increased TXA(2) production in cirrhotic but not in control livers. Indomethacin and COX-1 inhibition, but not COX-2 or NO inhibition, prevented the increased production of TXA(2). CONCLUSIONS: An increased production of TXA(2) is involved in the pathogenesis of endothelial dysfunction in cirrhotic rat livers. This is mainly mediated by COX-1, but not by COX-2.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Isoenzymes/antagonists & inhibitors , Liver Cirrhosis/physiopathology , Liver/blood supply , Animals , Cyclooxygenase 1 , Endothelium, Vascular/enzymology , Male , Membrane Proteins , Prostaglandin-Endoperoxide Synthases , Rats , Rats, Wistar
11.
J Neurochem ; 85(3): 651-61, 2003 May.
Article in English | MEDLINE | ID: mdl-12694391

ABSTRACT

Activation of glial cells is a prevalent response to neuronal damage in brain disease and ageing, with potential neuroprotective and neurotoxic consequences. We were interested in studying the role of glial activation on dopaminergic neurons of the substantia nigra in an animal model of Parkinson's disease. Thus, we evaluated the effect of a pre-existing glial activation on the dopaminergic neuronal death induced by striatal infusion of 6-hydroxydopamine. We established a model of local glial activation by stereotaxic infusion of interleukin-1beta in the substantia nigra of adult rats. Interleukin-1beta (20 ng) induced a marked activation of astrocytes at days 2, 5 and 10, revealed by heat-shock protein 27 and glial fibrillary acid protein immunohistochemistry, but did not affect the microglial markers OX-42 and heat-shock proteins 32 or 47. Intranigral infusion of interleukin-1beta 5 days before a striatal injection of 6-hydroxydopamine significantly protected nigral dopaminergic cell bodies, but not striatal terminals from the 6-hydroxydopamine lesion. Also, in the animals pre-treated with interleukin-1beta, a significant prevention of 6-hydroxydopamine-induced reduction of adjusting steps, but not of 6-hydroxydopamine-induced amphetamine rotations, were observed. These data show the characterization of a novel model of local astroglial activation in the substantia nigra and support the hypothesis of a neuroprotective role of activated astrocytes in Parkinson's disease.


Subject(s)
Astrocytes/drug effects , Heat-Shock Proteins , Interleukin-1/administration & dosage , Neurons/drug effects , Parkinsonian Disorders/prevention & control , Substantia Nigra/drug effects , Animals , Astrocytes/metabolism , Astrocytes/pathology , Body Temperature/drug effects , Body Weight/drug effects , Cell Count , Corpus Striatum/drug effects , Corpus Striatum/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/metabolism , HSP27 Heat-Shock Proteins , Infusions, Parenteral , Male , Motor Activity/drug effects , Neoplasm Proteins/metabolism , Neurons/pathology , Neuroprotective Agents/administration & dosage , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Rats , Rats, Sprague-Dawley , Stereotaxic Techniques , Substantia Nigra/metabolism , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...