Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(4): 5069-5076, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121735

ABSTRACT

The NanoMAX hard X-ray nanoprobe is the first beamline to take full advantage of the diffraction-limited storage ring at the MAX IV synchrotron and delivers a high coherent photon flux for applications in diffraction and imaging. Here, we characterize its coherent and focused beam using ptychographic analysis. We derive beam profiles in the energy range 6-22 keV and estimate the coherent flux based on a probe mode decomposition approach.

2.
RSC Adv ; 8(23): 12628-12634, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-35541233

ABSTRACT

Metal-assisted chemical etching (MACE) reaction parameters were investigated for the fabrication of specially designed silicon-based X-ray zone plate nanostructures using a gold catalyst pattern and etching solutions composed of HF and H2O2. Etching depth, zone verticality and zone roughness were studied as a function of etching solution composition, temperature and processing time. Homogeneous, vertical etching with increasing depth is observed at increasing H2O2 concentrations and elevated processing temperatures, implying a balance in the hole injection and silica dissolution kinetics at the gold-silicon interface. The etching depth decreases and zone roughness increases at the highest investigated H2O2 concentration and temperature. Possible reasons for these observations are discussed based on reaction chemistry and zone plate design. Optimum MACE conditions are found at HF : H2O2 concentrations of 4.7 M : 0.68 M and room temperature with an etching rate of ≈0.7 µm min-1, which is about an order of magnitude higher than previous reports. Moreover, our results show that a grid catalyst design is important for successful fabrication of vertical high aspect ratio silicon nanostructures.

3.
Opt Express ; 25(11): 12188-12194, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786577

ABSTRACT

We present a Moiré method that can be used to investigate positional instabilities in a scanning hard x-ray microscope with nanometer precision. The development of diffraction-limited storage rings offering highly-brilliant synchrotron radiation and improvements of nanofocusing x-ray optics paves the way towards 3D nanotomography with 10 nm resolution or below. However, this trend demands improved designs of x-ray microscope instruments which should offer few-nm beam stabilities with respect to the sample. Our technique can measure the position of optics and sample stage relative to each other in the two directions perpendicular to the beam propagation in a scanning x-ray microscope using simple optical components and visible light. The usefulness of the method was proven by measuring short and long term instabilities of a zone-plate-optics-based prototype microscope. We think it can become an important tool for the characterization of scanning x-ray microscopes, especially prior to experiments with an actual x-ray beam.

4.
Nat Commun ; 8: 14623, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28248317

ABSTRACT

Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...