Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
Add more filters











Publication year range
1.
Rev Neurosci ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39002110

ABSTRACT

Major depressive disorder (MDD) patients commonly encounter multiple types of functional disabilities, such as social, physical, and role functioning. MDD is related to an accreted risk of brain atrophy, aging-associated brain diseases, and mortality. Based on recently available studies, there are correlations between notable biological brain aging and MDD in adulthood. Despite several clinical and epidemiological studies that associate MDD with aging phenotypes, the underlying mechanisms in the brain remain unknown. The key areas in the study of biological brain aging in MDD are structural brain aging, impairment in functional connectivity, and the impact on cognitive function and age-related disorders. Various measurements have been used to determine the severity of brain aging, such as the brain age gap estimate (BrainAGE) or brain-predicted age difference (BrainPAD). This review summarized the current results of brain imaging data on the similarities between the manifestation of brain structural changes and the age-associated processes in MDD. This review also provided recent evidence of BrainPAD or BrainAGE scores in MDD, brain structural abnormalities, and functional connectivity, which are commonly observed between MDD and age-associated processes. It serves as a basis of current reference for future research on the potential areas of investigation for diagnostic, preventive, and potentially therapeutic purposes for brain aging in MDD.

2.
Cell Tissue Res ; 397(2): 111-124, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38829397

ABSTRACT

Nitric oxide (NO) is a gaseous molecule that regulates various reproductive functions. It is a well-recognized regulator of GnRH-FSH/LH-sex steroid secretion in vertebrates including fish. Kisspeptin is a recently discovered neuropeptide which also regulates GnRH secretion. Nitrergic and kisspeptin neurons are reported in close physical contact in the mammalian brain suggesting their interactive role in the release of GnRH. The existence of kisspeptin and NOS is also demonstrated in vertebrate gonads, but information on their reciprocal relation in gonads, if any, is obscure. Therefore, attempts were made to evaluate the functional reciprocal relation between nitric oxide and kisspeptin in the catfish gonads, if any, by administering the nitric oxide synthase (NOS) inhibitor, L-NAME {N(G)-nitro-L-arginine methyl ester}, which reduces NO production, and kisspeptin agonist (KP-10) and assessing their impacts on the expressions of kisspeptin1, different NOS isoforms, NO and steroid production in the gonadal tissue. The results revealed that L-NAME suppressed the expression of kiss1 in gonads of the catfish establishing the role of NO in kisspeptin expression. However, KP-10 increased the expression of all the isoforms of NOSs (iNOS, eNOS, nNOS) and concurrently NO and steroids in the ovary and testis. In vitro studies also indicate that kisspeptin stimulates the production of NO and estradiol and testosterone levels in the gonadal explants and medium. Thus, in vivo results clearly suggest a reciprocal interaction between kisspeptin and NO to regulate the gonadal activity of the catfish. The in vitro findings further substantiate our contention regarding the interactive role of kisspeptin and NO in gonadal steroidogenesis.


Subject(s)
Catfishes , Gametogenesis , Kisspeptins , NG-Nitroarginine Methyl Ester , Nitric Oxide , Animals , Nitric Oxide/metabolism , Catfishes/metabolism , Kisspeptins/metabolism , Male , NG-Nitroarginine Methyl Ester/pharmacology , Female , Gametogenesis/drug effects , Steroids/biosynthesis , Nitric Oxide Synthase/metabolism , Testis/metabolism , Testis/drug effects , Gonads/metabolism , Gonads/drug effects , Ovary/metabolism
3.
Sci Rep ; 14(1): 3823, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360784

ABSTRACT

Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Animals , Female , Male , Hypoglycemic Agents/pharmacology , Limonene , Zebrafish/metabolism , Blood Glucose/metabolism , Proton Magnetic Resonance Spectroscopy , Obesity/metabolism , Diet, High-Fat , Hyperglycemia/complications
4.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256941

ABSTRACT

Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) pathway and have shown mixed outcome, largely due to development of resistances and increased tumour aggressiveness. In this study, we used the zebrafish model to screen for novel anti-angiogenic molecules from a library of compounds derived from natural products. From this, we identified canthin-6-one, an indole alkaloid, which inhibited zebrafish intersegmental vessel (ISV) and sub-intestinal vessel development. Further characterisation revealed that treatment of canthin-6-one reduced ISV endothelial cell number and inhibited proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that canthin-6-one inhibits endothelial cell proliferation. Of note, canthin-6-one did not inhibit VEGFA-induced phosphorylation of VEGFR2 in HUVECs and downstream phosphorylation of extracellular signal-regulated kinase (Erk) in leading ISV endothelial cells in zebrafish, suggesting that canthin-6-one inhibits angiogenesis independent of the VEGFA/VEGFR2 pathway. Importantly, we found that canthin-6-one impairs tumour-associated angiogenesis in a zebrafish B16F10 melanoma cell xenograft model and synergises with VEGFR inhibitor sunitinib malate to inhibit developmental angiogenesis. In summary, we showed that canthin-6-one exhibits anti-angiogenic properties in both developmental and pathological contexts in zebrafish, independent of the VEGFA/VEGFR2 pathway and demonstrate that canthin-6-one may hold value for further development as a novel anti-angiogenic drug.

5.
Front Behav Neurosci ; 17: 1205175, 2023.
Article in English | MEDLINE | ID: mdl-37744951

ABSTRACT

Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.

7.
Cell Tissue Res ; 393(2): 377-391, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37278825

ABSTRACT

Neurokinin B (NKB), a recently discovered neuropeptide, plays a crucial role in regulating the kiss-GnRH neurons in vertebrate's brain. NKB is also characterized in gonadal tissues; however, its role in gonads is poorly understood. Therefore, in the present study, the effects of NKB on gonadal steroidogenesis and gametogenesis through in vivo and in vitro approaches using NKB antagonist MRK-08 were evaluated. The results suggest that the NKB antagonist decreases the development of advanced ovarian follicles and germ cells in the testis. In addition, MRK-08 further reduces the production of 17ß-estradiol in the ovary and testosterone in the testis under both in vivo and in vitro conditions in a dose-dependent manner. Furthermore, the in vitro MRK-08 treatment of gonadal explants attenuated the expression of steroidogenic marker proteins, i.e., StAR, 3ß-HSD, and 17ß-HSD dose-dependently. Moreover, the MAP kinase proteins, pERK1/2 & ERK1/2 and pAkt & Akt were also downregulated by MRK-08. Thus, the study suggests that NKB downregulates steroidogenesis by modulating the expressions of steroidogenic marker proteins involving ERK1/2 & pERK1/2 and Akt/pAkt signalling pathways. NKB also appears to regulate gametogenesis by regulating gonadal steroidogenesis in the catfish.


Subject(s)
Catfishes , Neurokinin B , Male , Animals , Female , Neurokinin B/metabolism , Catfishes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Testis/metabolism , Gametogenesis
8.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108291

ABSTRACT

Stress is known to have a significant impact on mental health. While gender differences can be found in stress response and mental disorders, there are limited studies on the neuronal mechanisms of gender differences in mental health. Here, we discuss gender and cortisol in depression as presented by recent clinical studies, as well as gender differences in the role of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in stress-associated mental disorders. When examining clinical studies drawn from PubMed/MEDLINE (National Library of Medicine) and EMBASE, salivary cortisol generally showed no gender correlation. However, young males were reported to show heightened cortisol reactivity compared to females of similar age in depression. Pubertal hormones, age, early life stressors, and types of bio-samples for cortisol measurement affected the recorded cortisol levels. The role of GRs and MRs in the HPA axis could be different between males and females during depression, with increased HPA activity and upregulated MR expression in male mice, while the inverse happened in female mice. The functional heterogeneity and imbalance of GRs and MRs in the brain may explain gender differences in mental disorders. This knowledge and understanding will support the development of gender-specific diagnostic markers involving GRs and MRs in depression.


Subject(s)
Hydrocortisone , Receptors, Glucocorticoid , Male , Female , Mice , Animals , Hydrocortisone/metabolism , Receptors, Glucocorticoid/metabolism , Hypothalamo-Hypophyseal System/metabolism , Sex Factors , Depression , Pituitary-Adrenal System/metabolism , Receptors, Mineralocorticoid/metabolism , Stress, Psychological
9.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047030

ABSTRACT

The hypothalamic neurohormone kisspeptin-10 (KP-10) was inherently implicated in cholinergic pathologies when aberrant fluctuations of expression patterns and receptor densities were discerned in neurodegenerative micromilieus. That said, despite variable degrees of functional redundancy, KP-10, which is biologically governed by its cognate G-protein-coupled receptor, GPR54, attenuated the progressive demise of α-synuclein (α-syn)-rich cholinergic-like neurons. Under explicitly modeled environments, in silico algorithms further rationalized the surface complementarities between KP-10 and α-syn when KP-10 was unambiguously accommodated in the C-terminal binding pockets of α-syn. Indeed, the neuroprotective relevance of KP-10's binding mechanisms can be insinuated in the amelioration of α-syn-mediated neurotoxicity; yet it is obscure whether these extenuative circumstances are contingent upon prior GPR54 activation. Herein, choline acetyltransferase (ChAT)-positive SH-SY5Y neurons were engineered ad hoc to transiently overexpress human wild-type or E46K mutant α-syn while the mitigation of α-syn-induced neuronal death was ascertained via flow cytometric and immunocytochemical quantification. Recapitulating the specificity observed on cell viability, exogenously administered KP-10 (0.1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated apoptosis and mitochondrial depolarization in cholinergic differentiated neurons. In particular, co-administrations with a GPR54 antagonist, kisspeptin-234 (KP-234), failed to abrogate the robust neuroprotection elicited by KP-10, thereby signifying a GPR54 dispensable mechanism of action. Consistent with these observations, KP-10 treatment further diminished α-syn and ChAT immunoreactivity in neurons overexpressing wild-type and E46K mutant α-syn. Overall, these findings lend additional credence to the previous notion that KP-10's binding zone may harness efficacious moieties of neuroprotective intent.


Subject(s)
Kisspeptins , Neuroblastoma , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Apoptosis , Kisspeptins/genetics , Kisspeptins/pharmacology , Kisspeptins/metabolism , Neuroblastoma/metabolism , Neurons/metabolism
10.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835497

ABSTRACT

Several theories have been proposed to explain the mechanisms of substance use in schizophrenia. Brain neurons pose a potential to provide novel insights into the association between opioid addiction, withdrawal, and schizophrenia. Thus, we exposed zebrafish larvae at 2 days post-fertilization (dpf) to domperidone (DPM) and morphine, followed by morphine withdrawal. Drug-induced locomotion and social preference were assessed, while the level of dopamine and the number of dopaminergic neurons were quantified. In the brain tissue, the expression levels of genes associated with schizophrenia were measured. The effects of DMP and morphine were compared to vehicle control and MK-801, a positive control to mimic schizophrenia. Gene expression analysis revealed that α1C, α1Sa, α1Aa, drd2a, and th1 were up-regulated after 10 days of exposure to DMP and morphine, while th2 was down-regulated. These two drugs also increased the number of positive dopaminergic neurons and the total dopamine level but reduced the locomotion and social preference. The termination of morphine exposure led to the up-regulation of th2, drd2a, and c-fos during the withdrawal phase. Our integrated data implicate that the dopamine system plays a key role in the deficits in social behavior and locomotion that are common in the schizophrenia-like symptoms and opioid dependence.


Subject(s)
Calcium Channels , Domperidone , Dopamine Antagonists , Dopamine , Dopaminergic Neurons , Morphine , Opioid-Related Disorders , Schizophrenia , Animals , Calcium Channels/metabolism , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Morphine/administration & dosage , Morphine/pharmacology , Opioid-Related Disorders/metabolism , Schizophrenia/metabolism , Zebrafish , Domperidone/administration & dosage , Domperidone/pharmacology , Dopamine Antagonists/administration & dosage , Dopamine Antagonists/pharmacology , Locomotion/drug effects , Metabolic Networks and Pathways
11.
Proc Natl Acad Sci U S A ; 120(3): e2117547120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36623187

ABSTRACT

Social disturbance in interpersonal relationships is the primary source of stress in humans. Spexin (SPX, SPX1a in cichlid), an evolutionarily conserved neuropeptide with diverse physiological functions, is up-regulated in the brain during chronic social defeat stress in teleost. On the other hand, repeated exposure to social stress can lead to dysregulation of the monoaminergic system and increase the vulnerability of developing depression. Since dysfunction of the serotonin (5-hydroxytryptamine, 5-HT) system is associated with social stress and the pathophysiology of depression, the present study investigated the regulatory relationship between the central 5-HT system and SPX1a in the male teleost, Nile tilapia (Oreochromis niloticus). To identify stress factors that regulate SPX1a gene expression, cortisol, dexamethasone (DEX), and 5-HT were used to treat tilapia brain primary cultures. Our study shows cortisol and DEX treatment had no effect on SPX1a gene expression, but SPX1a gene expression was down-regulated following 5-HT treatment. Anatomical localization showed a close association between 5-HT immunoreactive projections and SPX1a neurons in the semicircular torus. In addition, 5-HT receptors (5-HT2B) were expressed in SPX1a neurons. SPX1a immunoreactive neurons and SPX1a gene expression were significantly increased in socially defeated tilapia. On the other hand, citalopram (antidepressant, 5-HT antagonist) treatment to socially defeated tilapia normalized SPX1a gene expression to control levels. Taken together, the present study shows that 5-HT is an upstream regulator of SPX1a and that the inhibited 5-HT activates SPX1a during social defeat.


Subject(s)
Peptide Hormones , Serotonin , Social Defeat , Tilapia , Animals , Male , Brain/metabolism , Hydrocortisone/pharmacology , Hydrocortisone/metabolism , Serotonin/metabolism , Tilapia/genetics , Peptide Hormones/metabolism
12.
Front Endocrinol (Lausanne) ; 13: 882772, 2022.
Article in English | MEDLINE | ID: mdl-35692389

ABSTRACT

Spexin (SPX) and galanin (GAL) are two neuropeptides that are phylogenetically related and have descended from a common ancestral gene. Considerable attention has been given to these two multifunctional neuropeptides because they share GAL receptors 1,2, and 3. Since GAL and SPX-synthesizing neurons have been detected in several brain areas, therefore, it can be speculated that SPX and GAL are involved in various neurophysiological functions. Several studies have shown the functions of these two neuropeptides in energy regulation, reproduction, and response to stress. SPX acts as a satiety factor to suppress food intake, while GAL has the opposite effect as an orexigenic factor. There is evidence that SPX acts as an inhibitor of reproductive functions by suppressing gonadotropin release, while GAL modulates the activity of gonadotropin-releasing hormone (GnRH) neurons in the brain and gonadotropic cells in the pituitary. SPX and GAL are responsive to stress. Furthermore, SPX can act as an anxiolytic factor, while GAL exerts anti-depressant and pro-depressive effects depending on the receptor it binds. This review describes evidence supporting the central roles of SPX and GAL neuropeptides in energy balance, reproduction, stress, and social behaviors, with a particular focus on non-mammalian vertebrate systems.


Subject(s)
Neuropeptides , Peptide Hormones , Animals , Galanin/metabolism , Neuropeptides/metabolism , Peptide Hormones/metabolism , Social Behavior , Vertebrates/metabolism
13.
Int J Mol Sci ; 23(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35563582

ABSTRACT

The neuropathological substrate of dementia with Lewy bodies (DLB) is defined by the inextricable cross-seeding accretion of amyloid-ß (Aß) and α-synuclein (α-syn)-laden deposits in cholinergic neurons. The recent revelation that neuropeptide kisspeptin-10 (KP-10) is able to mitigate Aß toxicity via an extracellular binding mechanism may provide a new horizon for innovative drug design endeavors. Considering the sequence similarities between α-syn's non-amyloid-ß component (NAC) and Aß's C-terminus, we hypothesized that KP-10 would enhance cholinergic neuronal resistance against α-syn's deleterious consequences through preferential binding. Here, human cholinergic SH-SY5Y cells were transiently transformed to upsurge the mRNA expression of α-syn while α-syn-mediated cholinergic toxicity was quantified utilizing a standardized viability-based assay. Remarkably, the E46K mutant α-syn displayed elevated α-syn mRNA levels, which subsequently induced more cellular toxicity compared with the wild-type α-syn in choline acetyltransferase (ChAT)-positive cholinergic neurons. Treatment with a high concentration of KP-10 (10 µM) further decreased cholinergic cell viability, while low concentrations of KP-10 (0.01-1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated toxicity. Correlating with the in vitro observations are approximations from in silico algorithms, which inferred that KP-10 binds favorably to the C-terminal residues of wild-type and E46K mutant α-syn with CDOCKER energy scores of -118.049 kcal/mol and -114.869 kcal/mol, respectively. Over the course of 50 ns simulation time, explicit-solvent molecular dynamics conjointly revealed that the docked complexes were relatively stable despite small-scale fluctuations upon assembly. Taken together, our findings insinuate that KP-10 may serve as a novel therapeutic scaffold with far-reaching implications for the conceptualization of α-syn-based treatments.


Subject(s)
Kisspeptins , alpha-Synuclein , Amyloid beta-Peptides/metabolism , Cholinergic Agents , Humans , Kisspeptins/genetics , Kisspeptins/pharmacology , RNA, Messenger , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
14.
Int J Mol Sci ; 23(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35563106

ABSTRACT

The link between substance abuse and the development of schizophrenia remains elusive. In this study, we assessed the molecular and behavioural alterations associated with schizophrenia, opioid addiction, and opioid withdrawal using zebrafish as a biological model. Larvae of 2 days post fertilization (dpf) were exposed to domperidone (DMP), a dopamine-D2 dopamine D2 receptor antagonist, and morphine for 3 days and 10 days, respectively. MK801, an N-methyl-D-aspartate (NMDA) receptor antagonist, served as a positive control to mimic schizophrenia-like behaviour. The withdrawal syndrome was assessed 5 days after the termination of morphine treatment. The expressions of schizophrenia susceptibility genes, i.e., pi3k, akt1, slc6a4, creb1 and adamts2, in brains were quantified, and the levels of whole-body cyclic adenosine monophosphate (cAMP), serotonin and cortisol were measured. The aggressiveness of larvae was observed using the mirror biting test. After the short-term treatment with DMP and morphine, all studied genes were not differentially expressed. As for the long-term exposure, akt1 was downregulated by DMP and morphine. Downregulation of pi3k and slc6a4 was observed in the morphine-treated larvae, whereas creb1 and adamts2 were upregulated by DMP. The levels of cAMP and cortisol were elevated after 3 days, whereas significant increases were observed in all of the biochemical tests after 10 days. Compared to controls, increased aggression was observed in the DMP-, but not morphine-, treated group. These two groups showed reduction in aggressiveness when drug exposure was prolonged. Both the short- and long-term morphine withdrawal groups showed downregulation in all genes examined except creb1, suggesting dysregulated reward circuitry function. These results suggest that biochemical and behavioural alterations in schizophrenia-like symptoms and opioid dependence could be controlled by common mechanisms.


Subject(s)
Opioid-Related Disorders , Schizophrenia , Substance Withdrawal Syndrome , Animals , Hydrocortisone , Larva/metabolism , Morphine/adverse effects , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, N-Methyl-D-Aspartate , Schizophrenia/genetics , Zebrafish/genetics , Zebrafish/metabolism
16.
Metabolomics ; 18(2): 12, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35092490

ABSTRACT

BACKGROUND: Today, obesity affects over one-third of the global population and is hugely considered the Industrial Revolution's side effect. This multi-factorial disease is continuously spreading across developing countries, including the Middle East and Southeast Asia region, where Malaysia and Darussalam Brunei are the most affected. The sedentary lifestyle and availability of surplus foods have dramatically increased the number of individuals with type 2 diabetes in these countries. Thus, an adequate medical strategy must be developed urgently to address and remedy these diseases. Natural sources have been attracting attention, especially in Malaysia, where most land areas are under plant cover. Metabolomics, as a prophylactic technique, has been used extensively in Malaysia to investigate the potential use and benefits of herbs to combat obesity and diabetes. AIM OF REVIEW: This review aims to explain the application of the metabolomics approach in the study of anti-diabetes and anti-obesity activity of Malaysian herbs to identify the stand-up point for future advancement in using these herbs as a primary source for drug exploration. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review provides an overview of using metabolomics technique in studying the anti-diabetes and anti-obesity activity of Malaysian herbs. Specific emphasis is given to the changed metabolites in both in vivo and in vitro treatment of Malaysia herbs that might be future drugs for treating diabetes and obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Biomarkers , Diabetes Mellitus, Type 2/drug therapy , Humans , Malaysia , Metabolomics , Obesity/drug therapy
17.
Front Neuroendocrinol ; 64: 100951, 2022 01.
Article in English | MEDLINE | ID: mdl-34757093

ABSTRACT

Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.


Subject(s)
Kisspeptins , Zebrafish , Animals , Genes, Tumor Suppressor , Hypothalamus/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Kisspeptin-1/genetics , Receptors, Kisspeptin-1/metabolism , Reproduction/physiology , Zebrafish/genetics , Zebrafish/metabolism
18.
J Neuroendocrinol ; 34(5): e13068, 2022 05.
Article in English | MEDLINE | ID: mdl-34931380

ABSTRACT

Three paralogous genes for gonadotropin-releasing hormone (GnRH; gnrh1, gnrh2, and gnrh3) and GnRH receptors exist in non-mammalian vertebrates. However, there are some vertebrate species in which one or two of these paralogous genes have become non-functional during evolution. The developmental migration of GnRH neurons in the brain is evolutionarily conserved in mammals, reptiles, birds, amphibians, and jawed teleost fish. The three GnRH paralogs have specific expression patterns in the brain and originate from multiple sites. In acanthopterygian teleosts (medaka, cichlid, etc.), the preoptic area (POA)-GnRH1 and terminal nerve (TN)-GnRH3 neuronal types originate from the olfactory regions. In other fish species (zebrafish, goldfish and salmon) with only two GnRH paralogs (GnRH2 and GnRH3), the TN- and POA-GnRH3 neuronal types share the same olfactory origin. However, the developmental origin of midbrain (MB)-GnRH2 neurons is debatable between mesencephalic or neural crest site. Each GnRH system has distinctive anatomical and physiological characteristics, and functions differently. The POA-GnRH1 neurons are hypophysiotropic in nature and function in the neuroendocrine control of reproduction. The non-hypophysiotropic GnRH2/GnRH3 neurons probably play neuromodulatory roles in metabolism (MB-GnRH2) and the control of motivational state for sexual behavior (TN-GnRH3).


Subject(s)
Gonadotropin-Releasing Hormone , Zebrafish , Animals , Gonadotropin-Releasing Hormone/metabolism , Mammals , Neurons/metabolism , Receptors, LHRH/metabolism
19.
Gen Comp Endocrinol ; 317: 113973, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34971635

ABSTRACT

Hypothalamic kisspeptin encoded by KISS1/Kiss1 gene emerged as a regulator of the reproductive axis in mammals following the discovery of the kisspeptin receptor (Kissr) and its role in reproduction. Kisspeptin-Kissr systems have been investigated in various vertebrates, and a conserved sequence of kisspeptin-Kissr has been identified in most vertebrate species except in the avian linage. In addition, multiple paralogs of kisspeptin sequences have been identified in the non-mammalian vertebrates. The allegedly conserved role of kisspeptin-Kissr in reproduction became debatable when kiss/kissr genes-deficient zebrafish and medaka showed no apparent effect on the onset of puberty, sexual development, maturation and reproductive capacity. Therefore, it is questionable whether the role of kisspeptin in reproduction is conserved among vertebrate species. Here we discuss from a comparative and evolutional aspect the diverse functions of kisspeptin and its receptor in vertebrates. Primarily this review focuses on the role of hypothalamic kisspeptin in reproductive and non-reproductive functions that are conserved in vertebrate species.


Subject(s)
Kisspeptins , Zebrafish , Animals , Hypothalamus/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Mammals/metabolism , Reproduction/genetics , Sexual Maturation , Zebrafish/metabolism
20.
Neurosci Biobehav Rev ; 132: 870-883, 2022 01.
Article in English | MEDLINE | ID: mdl-34801259

ABSTRACT

The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.


Subject(s)
Habenula , Anxiety , Fear/physiology , Habenula/metabolism , Humans , Memory/physiology , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL