Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 49(30): 10603-10612, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32696771

ABSTRACT

The reactions of UO2(OAc)2·2H2O with benzil bis(isonicotinoyl hydrazone) ligand (H2L) in varied solvent media resulted in the formation of a series of new dioxouranium(vi) complexes 1-3 of the type UO2(L)(X), [where 1, X = DMF; 2, X = DMSO; 3, X = H2O]. The complexes were systematically characterized by elemental analysis, UV-Visible spectroscopy, TGA, mass spectrometry, cyclic voltammetry, and powder X-ray diffraction study. Among all the complexes, 1 was confirmed by single-crystal X-ray diffraction study. It was found that 1 preferred a distorted pentagonal bipyramidal geometry, in which an equatorial coordination plane was formed by the ONNO-tetradentate cavity of the deprotonated hydrazone ligand along with an additional oxygen atom of the coordinated solvent molecule. Thermal analysis suggested that complexes 1 and 3 undergo weight loss in the temperature range 180-210 °C and 100-120 °C, respectively, due to the ready release of their coordinated solvent molecules. Complexes 1-3 exhibited analogous UV-Visible absorption bands and the intense band between 300-600 nm was assigned to the M ← L and n → π* transitions. Weakly resolved reduction waves assigned to {UO2}2+/{UO2}+ couple were observed for complexes 1 and 2 {1, -1.76 V; 2, -1.75 V; vs. ferrocenium/ferrocene (Fc+/Fc)} in DMSO solution, signifying the feeble electron-donating nature of the L2- ligand. Powder X-ray diffraction study suggested that the crystallite size of all the complexes was in the nanoscale range. Further analysis using density functional theory (DFT) calculations provided structural insights as well as information on the electronic properties of both complex 1 and the ligand.

2.
Front Chem ; 7: 403, 2019.
Article in English | MEDLINE | ID: mdl-31245353

ABSTRACT

Electrocatalytic active species like transition metal oxides have been widely combined with carbon-based nanomaterials for enhanced Oxygen Reduction Reaction (ORR) studies because of the synergistic effect arising between different components. The aim of the present study is to synthesize CeO2/g-C3N4 system and compare the ORR activity with bare CeO2. Ceria (CeO2) embedded on g-C3N4 nanocomposite was synthesized by a single-step microwave-mediated solvothermal method. This cerium oxide-based nanocomposite displays enhanced ORR activity and electrochemical stability as compared to bare ceria.

3.
Microb Pathog ; 119: 145-151, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29596880

ABSTRACT

In this paper, we have reported the synthesis, characterization, and evaluation of antimicrobial and antioxidant potential of monodispersed Zinc Oxide (ZnO) nanoparticles synthesized by the room temperature precipitation (aqueous phase) and polyol method (organic phase). ZnO nanoparticle synthesized by both the methods had shown excellent DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging, metal chelating (MC), ABTS (2,2'-azino-bis; 3-ethylbenzothiazoline-6-sulphonic acid), hydroxyl radical and superoxide radical scavenging activity (SAS). Scavenging activities were assayed within a concentration range of 25-75 ng ml-1. The antibacterial activities with MIC were investigated against two Gram-positive bacteria Streptococcus mutans (MTCC 497) and S. pyogens (MTCC 1926); three Gram negative bacteria Vibrio cholerae (MTCC 3906), Shigella flexneri (MTCC 1457) and Salmonella typhii (MTCC 1252). ZnO nanoparticles synthesized by the polyol method showed better MIC values against both Gram-positive and Gram-negative bacteria as compared to particles synthesized by aqueous precipitation method. Present study demonstrates the successful synthesis of ZnO nanoparticles with antioxidant property and significant broad spectrum antibacterial activity against several clinical bacterial pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Nanoparticles/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemical synthesis , Benzothiazoles , Biphenyl Compounds , Chelating Agents , Free Radical Scavengers , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hydroxyl Radical , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Particle Size , Picrates , Polymers , Spectroscopy, Fourier Transform Infrared , Sulfonic Acids , Superoxides , X-Ray Diffraction , Zinc Oxide/chemical synthesis
4.
Appl Biochem Biotechnol ; 177(1): 148-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26137877

ABSTRACT

Monodispersed cerium oxide nanoparticle has been synthesized by microwave-mediated hydrothermal as well as microwave-mediated solvothermal synthesis. X-ray diffraction (XRD) data shows that the synthesized particles are single phase. SEM and TEM analysis suggest that particle synthesized by microwave-mediated solvothermal method are less agglomerated. In vitro toxicology study of the synthesized nanoceria particles has shown good free radical scavenging activity for NO and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assayed except superoxide radical within a concentration range of 25 to 75 ng ml(-1). Nanoceria particle also showed inhibition of Fe-ascorbate-induced lipid peroxidation (LPx) in chick liver mitochondrial fractions. Solvothermally synthesized nanoceria showed better protection against Fe-ascorbate-induced LPx than the hydrothermal one while the hydrothermally synthesized nanoceria showed better DPPH and NO scavenging activity. The ceria nanoparticles also prevented Fe-ascorbate-H2O2-induced carbonylation of bovine serum albumin in a dose-dependent manner. At higher concentration, i.e., 100 ng ml(-1), the synthesized nanoparticles showed a reverse trend in all the parameters measured indicating its toxicity at higher doses.


Subject(s)
Antioxidants/pharmacology , Cerium/toxicity , Microwaves , Nanoparticles/toxicity , Nanotechnology/methods , Animals , Cattle , Chickens , Crystallization , Free Radical Scavengers/chemistry , Lipid Peroxidation/drug effects , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Nanoparticles/ultrastructure , Nitric Oxide/chemistry , Protein Carbonylation/drug effects , Serum Albumin, Bovine/metabolism , X-Ray Diffraction
5.
Methods Mol Biol ; 1025: 157-66, 2013.
Article in English | MEDLINE | ID: mdl-23918336

ABSTRACT

The venerable solution-depletion method is perhaps the most unambiguous method of measuring solute adsorption from solution to solid particles, requiring neither complex instrumentation nor associated interpretive theory. We describe herein an SDS-gel electrophoresis implementation of the solution--depletion method for measuring protein adsorption and protein-adsorption kinetics. Silanized-glass particles with different surface chemistry/energy and hydrophobic sepharose-based chromatographic media are used as example adsorbents. Electrophoretic separation enables quantification of adsorption competition among multiple proteins in solution for the same adsorbent surface, demonstrated herein by adsorption--competition kinetics from binary solution.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Proteins/chemistry , Solutions/chemistry , Adsorption , Chromatography, Agarose , Glass , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Biology/methods , Proteins/metabolism , Serum Albumin/chemistry , Surface Properties , Water/chemistry
6.
Biomaterials ; 33(1): 9-19, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21982294

ABSTRACT

Sepharose ion-exchange particles bearing strong Lewis acid/base functional groups (sulfopropyl, carboxymethyl, quaternary ammonium, dimethyl aminoethyl, and iminodiacetic acid) exhibiting high plasma protein adsorbent capacities are shown to be more efficient activators of blood factor XII in neat-buffer solution than either hydrophilic clean-glass particles or hydrophobic octyl sepharose particles (FXII (activator)→(surface) FXIIa; a.k.a autoactivation, where FXII is the zymogen and FXIIa is a procoagulant protease). In sharp contrast to the clean-glass standard of comparison, ion-exchange activators are shown to be inefficient activators of blood plasma coagulation. These contrasting activation properties are proposed to be due to the moderating effect of plasma-protein adsorption on plasma coagulation. Efficient adsorption of blood-plasma proteins unrelated to the coagulation cascade impedes FXII contacts with ion-exchange particles immersed in plasma, reducing autoactivation, and causing sluggish plasma coagulation. By contrast, plasma proteins do not adsorb to hydrophilic clean glass and efficient autoactivation leads directly to efficient activation of plasma coagulation. It is also shown that competitive-protein adsorption can displace FXIIa adsorbed to the surface of ion-exchange resins. As a consequence of highly-efficient autoactivation and FXIIa displacement by plasma proteins, ion-exchange particles are slightly more efficient activators of plasma coagulation than hydrophobic octyl sepharose particles that do not bear strong Lewis acid/base surface functionalities but to which plasma proteins adsorb efficiently. Plasma proteins thus play a dual role in moderating contact activation of the plasma coagulation cascade. The principal role is impeding FXII contact with activating surfaces, but this same effect can displace FXIIa from an activating surface into solution where the protease can potentiate subsequent steps of the plasma coagulation cascade.


Subject(s)
Factor XII/metabolism , Ion Exchange Resins/pharmacology , Plasma/metabolism , Blood Coagulation/drug effects , Humans , Ion Exchange Resins/chemistry
7.
Biomaterials ; 32(4): 969-78, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21035180

ABSTRACT

The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM.


Subject(s)
Serum Albumin/chemistry , Solutions/chemistry , Adsorption , Humans , Hydrophobic and Hydrophilic Interactions , Models, Theoretical , Quartz Crystal Microbalance Techniques , Surface Properties
8.
Biomaterials ; 31(6): 1068-79, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19892397

ABSTRACT

Contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension tau(a)(o)=gamma(lv)(o)cos theta in dyne/cm, where gamma(lv)(o) is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties -36

Subject(s)
Coated Materials, Biocompatible/chemistry , Factor XII/chemistry , Glass/chemistry , Materials Testing , Surface Tension
9.
Biomaterials ; 30(36): 6814-24, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19796805

ABSTRACT

Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near tau(o) = 30 dyne/cm (theta approximately 65 degrees) for all protein/surface combinations studied (where tau(o) identical with gamma(lv)(o) costheta is the water adhesion tension, gamma(lv)(o) is the interfacial tension of pure-buffer solution, and theta is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining "layer" thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher-order) layers are too distant from the adsorbent surface to be held surface bound by interaction forces in close proximity. Overall, results are consistent with the idea that protein adsorption is primarily controlled by water/surface interactions.


Subject(s)
Fibrinogen/chemistry , Immunoglobulin G/chemistry , Immunoglobulin M/chemistry , Serum Albumin/chemistry , Adsorption , Buffers , Glass/chemistry , Humans , Molecular Weight , Surface Properties , Thermodynamics , Water/chemistry , Wettability
10.
Biomaterials ; 30(33): 6495-513, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19751950

ABSTRACT

The standard solution-depletion method is implemented with SDS-gel electrophoresis as a multiplexing, separation-and-quantification tool to measure competition between two proteins (i and j) for adsorption to the same hydrophobic adsorbent particles (either octyl sepharose or silanized glass) immersed in binary-protein solutions. Adsorption kinetics reveals an unanticipated slow protein-size-dependent competition that controls steady-state adsorption selectivity. Two sequential pseudo-steady-state adsorption regimes (State 1 and State 2) are frequently observed depending on i, j solution concentrations. State 1 and State 2 are connected by a smooth transition, giving rise to sigmoidally-shaped adsorption-kinetic profiles with a downward inflection near 60 min of solution/adsorbent contact. Mass ratio of adsorbed i, j proteins (m(i)/m(j)) remains nearly constant between States 1 and 2, even though both m(i) and m(j) decrease in the transition between states. State 2 is shown to be stable for 24 h of continuous-adsorbent contact with stagnant solution whereas State 2 is eliminated by continuous mixing of adsorbent with solution. In sharp contrast to binary-competition results, adsorption to hydrophobic adsorbent particles from single-protein solutions (pure i or j) exhibits no detectable kinetics within the timeframe of experiment from either stagnant or continuously mixed solution, quickly achieving a single steady-state value in proportion to solution concentration. Comparison of binary competition between dissimilarly-sized protein pairs chosen to span a broad molecular-weight (MW) range demonstrates that selectivity between i and j scales with MW ratio that is proportional to protein-volume ratio (ubiquitin, Ub, MW=10.7 kDa; human serum albumin, HSA, MW=66.3 kDa; prothrombin, FII, 72 kDa; immunoglobulin G, IgG, MW=160 kDa; fibrinogen, Fib, MW=341 kDa). Results are interpreted in terms of a kinetic model of adsorption that has protein molecules rapidly diffusing into an inflating interphase that is spontaneously formed by bringing a protein solution into contact with a physical surface (State 1). State 2 follows by rearrangement of proteins within this interphase to achieve the maximum interphase concentration (dictated by energetics of interphase dehydration) within the thinnest (lowest volume) interphase possible by ejection of interphase water and initially-adsorbed proteins. Implications for understanding biocompatibility are discussed using a computational example relevant to the problem of blood-plasma coagulation.


Subject(s)
Proteins/metabolism , Adsorption , Humans , Kinetics , Models, Biological , Protein Stability , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...