Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36294594

ABSTRACT

The plant pathogen Fusarium graminearum is a proficient producer of mycotoxins and other in part still unknown secondary metabolites, some of which might act as virulence factors on wheat. The PKS15 gene is expressed only in planta, so far hampering the identification of an associated metabolite. Here we combined the activation of silent gene clusters by chromatin manipulation (kmt6) with blocking the metabolic flow into the competing biosynthesis of the two major mycotoxins deoxynivalenol and zearalenone. Using an untargeted metabolomics approach, two closely related metabolites were found in triple mutants (kmt6 tri5 pks4,13) deficient in production of the major mycotoxins deoxynivalenol and zearalenone, but not in strains with an additional deletion in PKS15 (kmt6 tri5 pks4,13 pks15). Characterization of the metabolites, by LC-HRMS/MS in combination with a stable isotope-assisted tracer approach, revealed that they are likely hybrid polyketides comprising a polyketide part consisting of malonate-derived acetate units and a structurally deviating part. We propose the names gramiketide A and B for the two metabolites. In a biological experiment, both gramiketides were formed during infection of wheat ears with wild-type but not with pks15 mutants. The formation of the two gramiketides during infection correlated with that of the well-known virulence factor deoxynivalenol, suggesting that they might play a role in virulence.

2.
Anal Bioanal Chem ; 414(25): 7421-7433, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35678834

ABSTRACT

Phenylalanine (Phe) is a central precursor for numerous secondary plant metabolites with a multitude of biological functions. Recent studies on the fungal disease Fusarium head blight in wheat showed numerous Phe-derived defence metabolites to be induced in the presence of the pathogen. These studies also suggest a partial incorporation of Phe-derived secondary metabolites into the cell wall. To broaden the view of the metabolome to bound Phe derivatives, an existing approach using 13C-labelled Phe as tracer was extended. The developed workflow consists of three successive extractions with an acidified acetonitrile-methanol-water mixture to remove the soluble plant metabolites, followed by cell wall hydrolysis with 4M aqueous NaOH, acidification with aqueous HCl, and liquid-liquid extraction of the hydrolysate with ethyl acetate. The untargeted screening of Phe-derived metabolites revealed 156 soluble compounds and 90 compounds in the hydrolysed samples including known cell wall constituents like ferulic acid, coumaric acid, and tricin. Forty-nine metabolites were found exclusively in the hydrolysate. The average cumulative extraction yield of the soluble metabolites was 99.6%, with a range of 91.8 to 100%. Repeatability coefficients of variation of the protocol ranged from 10.5 to 25.9%, with a median of 16.3%. To demonstrate the suitability of the proposed method for a typical metabolomics application, mock-treated and Fusarium graminearum-treated wheat samples were compared. The study revealed differences between the hydrolysates of the two sample types, confirming the differential incorporation of Phe-derived metabolites into the cell wall under infection conditions.


Subject(s)
Coumaric Acids , Fusarium , Acetonitriles , Fusarium/metabolism , Metabolome , Metabolomics/methods , Methanol , Phenylalanine , Plant Diseases/microbiology , Polyphenols , Sodium Hydroxide/metabolism , Triticum/metabolism , Water
3.
Molecules ; 26(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34770997

ABSTRACT

In the process of screening for new bioactive microbial metabolites we found a novel Æ´-pyrone derivative for which we propose the trivial name luteapyrone, in a recently described microscopic filamentous fungus, Metapochonia lutea BiMM-F96/DF4. The compound was isolated from the culture extract of the fungus grown on modified yeast extract sucrose medium by means of flash chromatography followed by preparative HPLC. The chemical structure was elucidated by NMR and LC-MS. The new compound was found to be non-cytotoxic against three mammalian cell lines (HEK 263, KB-3.1 and Caco-2). Similarly, no antimicrobial activity was observed in tested microorganisms (gram positive and negative bacteria, yeast and fungi).


Subject(s)
Fungi/chemistry , Hypocreales/chemistry , Molecular Structure
4.
Toxins (Basel) ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34822526

ABSTRACT

As aflatoxins are a global risk for humans and animals, testing methods for rapid on-site screening are increasingly needed alongside the standard analytical laboratory tools. In the presented study, lateral flow devices (LFDs) for rapid total aflatoxin screening were thoroughly investigated with respect to their matrix effects, cross-reactivity, their performance under harsh conditions in Sub-Saharan Africa (SSA), and their stability, as well as when compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS). To analyze the matrix effects, qualitative test kits offering a certain cutoff level were used to screen different nut samples. In addition, these tests were challenged on their cross-reactivity with 230 fungal toxins and metabolites. Furthermore, the resulting measurements performed under harsh tropical conditions (up to 38.4 °C and 91% relative humidity) in SSA, specifically Burkina Faso and Mozambique, were compared with the results from a well-established and validated LC-MS/MS-based reference method. The comparison of the on-site LFD results with the reference method showed a good agreement: 86.4% agreement, 11.8% non-agreement, and 1.8% invalid test results. To test the robustness of the cutoff tests, short- and long-term stability testing was carried out in Mozambique and Nigeria. For both experiments, no loss of test performance could be determined. Finally, a subset of African corn samples was shipped to Austria and analyzed under laboratory conditions using semiquantitative aflatoxin tests. A good correlation was found between the rapid strip tests and the LC-MS/MS reference method. Overall, the evaluated LFDs showed satisfying results regarding their cross-reactivity, matrix effects, stability, and robustness.


Subject(s)
Aflatoxins/analysis , Food Microbiology/methods , Food Storage , Mozambique , Nigeria
5.
Microorganisms ; 9(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072820

ABSTRACT

Volatile organic compounds (VOCs) play an essential role in microbe-microbe and plant-microbe interactions. We investigated the interaction between two plant growth-promoting rhizobacteria, and their interaction with tomato plants. VOCs produced by Pantoea agglomerans MVC 21 modulates the release of siderophores, the solubilisation of phosphate and potassium by Pseudomonas (Ps.) putida MVC 17. Moreover, VOCs produced by P. agglomerans MVC 21 increased lateral root density (LRD), root and shoot dry weight of tomato seedlings. Among the VOCs released by P. agglomerans MVC 21, only dimethyl disulfide (DMDS) showed effects similar to P. agglomerans MVC 21 VOCs. Because of the effects on plants and bacterial cells, we investigated how P. agglomerans MVC 21 VOCs might influence bacteria-plant interaction. Noteworthy, VOCs produced by P. agglomerans MVC 21 boosted the ability of Ps. putida MVC 17 to increase LRD and root dry weight of tomato seedlings. These results could be explained by the positive effect of DMDS and P. agglomerans MVC 21 VOCs on acid 3-indoleacetic production in Ps. putida MVC 17. Overall, our results clearly indicated that P. agglomerans MVC 21 is able to establish a beneficial interaction with Ps. putida MVC 17 and tomato plants through the emission of DMDS.

6.
Physiol Plant ; 172(4): 1950-1965, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33783004

ABSTRACT

Volatile organic compounds (VOCs) are produced by soil-borne microorganisms and play crucial roles in fungal interactions with plants and phytopathogens. Although VOCs have been characterized in Trichoderma spp., the mechanisms against phytopathogens strongly differ according to the strain and pathosystem. This study aimed at characterizing VOCs produced by three Trichoderma strains used as biofungicides and to investigate their effects against grapevine downy mildew (caused by Plasmopara viticola). A VOC-mediated reduction of downy mildew severity was found in leaf disks treated with Trichoderma asperellum T34 (T34), T. harzianum T39 (T39), and T. atroviride SC1 (SC1) and 31 compounds were detected by head space-solid phase microextraction gas chromatography-mass spectrometry. Among the Trichoderma VOCs annotated, α-farnesene, cadinene, 1,3-octadiene, 2-pentylfuran, and 6-pentyl-2H-pyran-2-one reduced downy mildew severity on grapevine leaf disks. In particular, 6-pentyl-2H-pyran-2-one and 2-pentylfuran increased the accumulation of callose and enhanced the modulation of defense-related genes after P. viticola inoculation, indicating an induction of grapevine defense mechanisms. Moreover, 6-pentyl-2H-pyran-2-one activated the hypersensitive response after P. viticola inoculation, possibly to reinforce the grapevine defense reaction. These results indicate that Trichoderma VOCs can induce grapevine resistance, and these molecules could be further applied to control grapevine downy mildew.


Subject(s)
Trichoderma , Vitis , Volatile Organic Compounds , Hypocreales , Plant Diseases
7.
Microorganisms ; 8(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182371

ABSTRACT

Plant beneficial rhizobacteria may antagonize soilborne plant pathogens by producing a vast array of volatile organic compounds (VOCs). The production of these compounds depends on the medium composition used for bacterial cell growth. Accordingly, Lysobacter capsici AZ78 (AZ78) grown on a protein-rich medium was previously found to emit volatile pyrazines with toxic activity against soilborne phypathogenic fungi and oomycetes. However, the discrepancy between the quantity of pyrazines in the gaseous phase and the minimum quantity needed to achieve inhibition of plant pathogens observed, lead us to further investigate the volatile-mediated inhibitory activity of AZ78. Here, we show that, besides VOCs, AZ78 cells produce ammonia in increased amounts when a protein-rich medium is used for bacterial growth. The production of this volatile compound caused the alkalinization of the physically separated culture medium where Rhizoctonia solani was inoculated subsequently. Results achieved in this work clearly demonstrate that VOC, ammonia and the growth medium alkalinization contribute to the overall inhibitory activity of AZ78 against R. solani. Thus, our findings suggest that the volatile-mediated inhibitory activity of rhizobacteria in protein-rich substrates can be regarded as a result of multiple factors interaction, rather than exclusively VOCs production.

8.
Metabolites ; 10(11)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121096

ABSTRACT

Stable isotope-assisted approaches can improve untargeted liquid chromatography-high resolution mass spectrometry (LC-HRMS) metabolomics studies. Here, we demonstrate at the example of chemically stressed wheat that metabolome-wide internal standardization by globally 13C-labeled metabolite extract (GLMe-IS) of experimental-condition-matched biological samples can help to improve the detection of treatment-relevant metabolites and can aid in the post-acquisition assessment of putative matrix effects in samples obtained upon different treatments. For this, native extracts of toxin- and mock-treated (control) wheat ears were standardized by the addition of uniformly 13C-labeled wheat ear extracts that were cultivated under similar experimental conditions (toxin-treatment and control) and measured with LC-HRMS. The results show that 996 wheat-derived metabolites were detected with the non-condition-matched 13C-labeled metabolite extract, while another 68 were only covered by the experimental-condition-matched GLMe-IS. Additional testing is performed with the assumption that GLMe-IS enables compensation for matrix effects. Although on average no severe matrix differences between both experimental conditions were found, individual metabolites may be affected as is demonstrated by wrong decisions with respect to the classification of significantly altered metabolites. When GLMe-IS was applied to compensate for matrix effects, 272 metabolites showed significantly altered levels between treated and control samples, 42 of which would not have been classified as such without GLMe-IS.

9.
Front Microbiol ; 11: 1748, 2020.
Article in English | MEDLINE | ID: mdl-32849377

ABSTRACT

The genus Lysobacter includes several bacterial species which show potential for being used in biological control of plant diseases. It was shown recently that several Lysobacter type strains produce volatile organic compounds (VOCs) which controlled the growth of Phytophthora infestans in vitro when the bacteria were grown on a protein rich medium. In the present study, Lysobacter capsici AZ78 (AZ78) has been tested for its potential to produce VOCs that may contribute to the bioactivity against soilborne plant pathogens. To this end, split Petri dish assays of bacterial cultures have been combined with GC-MS measurements with the aim to reveal the identity of the VOCs which inhibit the growth of Pythium ultimum Rhizoctonia solani, and Sclerotinia minor. While AZ78 completely suppressed the growth of P. ultimum and S. minor, the growth of R. solani was still reduced significantly. The GC-MS analysis revealed 22 VOCs to be produced by AZ78, the majority of which were (putatively) identified as mono- and dialkylated methoxypyrazines. Based on additional cultivation and GC-MS experiments, 2,5-dimethylpyrazine, 2-ethyl-3-methoxypyrazine and 2-isopropyl-3-methoxypyrazine were selected as presumable bioactive compounds. Further bioassays employing indirect exposure to standard solutions (1-10 mg per Petri dish) of the synthetic compounds via the gas phase, revealed that each of these pyrazines was able to suppress the growth of the pathogens under investigation. The results of this study highlight the possible future implementation of pyrazine derivatives in the control of soilborne plant diseases and further support the biocontrol potential of L. capsici AZ78.

10.
Plant Methods ; 16: 46, 2020.
Article in English | MEDLINE | ID: mdl-32280362

ABSTRACT

BACKGROUND: Stable isotopically labelled organisms have found wide application in life science research including plant physiology, plant stress and defense as well as metabolism related sciences. Therefore, the reproducible production of plant material enriched with stable isotopes such as 13C and 15N is of considerable interest. A high degree of enrichment (> 96 atom %) with a uniformly distributed isotope (global labelling) is accomplished by a continuous substrate supply during plant growth/cultivation. In the case of plants, 13C-labelling can be achieved by growth in 13CO2(g) atmosphere while global 15N-labelling needs 15N- containing salts in the watering/nutrient solution. Here, we present a method for the preparation of 13C and 15N-labelled plants by the use of closed growth chambers and hydroponic nutrient supply. The method is exemplified with durum wheat. RESULTS: In total, 330 g of globally 13C- and 295 g of 15N-labelled Triticum durum wheat was produced during 87 cultivation days. For this, a total of 3.88 mol of 13CO2(g) and 58 mmol of 15N were consumed. The degree of enrichment was determined by LC-HRMS and ranged between 96 and 98 atom % for 13C and 95-99 atom % for 15N, respectively. Additionally, the isotopically labelled plant extracts were successfully used for metabolome-wide internal standardisation of native T.durum plants. Application of an isotope-assisted LC-HRMS workflow enabled the detection of 652 truly wheat-derived metabolites out of which 143 contain N. CONCLUSION: A reproducible cultivation which makes use of climate chambers and hydroponics was successfully adapted to produce highly enriched, uniformly 13C- and 15N-labelled wheat. The obtained plant material is suitable to be used in all kinds of isotope-assisted research. The described technical equipment and protocol can easily be applied to other plants to produce 13C-enriched biological samples when the necessary specific adaptations e.g. temperature and light regime, as well as nutrient supply are considered. Additionally, the 15N-labelling method can also be carried out under regular glasshouse conditions without the need for customised atmosphere.

11.
Front Plant Sci ; 10: 1072, 2019.
Article in English | MEDLINE | ID: mdl-31552072

ABSTRACT

Fusarium graminearum is a plant pathogenic fungus which is able to infect wheat and other economically important cereal crop species. The role of ethylene in the interaction with host plants is unclear and controversial. We have analyzed the inventory of genes with a putative function in ethylene production or degradation of the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC). F. graminearum, in contrast to other species, does not contain a candidate gene encoding ethylene-forming enzyme. Three genes with similarity to ACC synthases exist; heterologous expression of these did not reveal enzymatic activity. The F. graminearum genome contains in addition two ACC deaminase candidate genes. We have expressed both genes in E. coli and characterized the enzymatic properties of the affinity-purified products. One of the proteins had indeed ACC deaminase activity, with kinetic properties similar to ethylene-stress reducing enzymes of plant growth promoting bacteria. The other candidate was inactive with ACC but turned out to be a d-cysteine desulfhydrase. Since it had been reported that ethylene insensitivity in transgenic wheat increased Fusarium resistance and reduced the content of the mycotoxin deoxynivalenol (DON) in infected wheat, we generated single and double knockout mutants of both genes in the F. graminearum strain PH-1. No statistically significant effect of the gene disruptions on fungal spread or mycotoxin content was detected, indicating that the ability of the fungus to manipulate the production of the gaseous plant hormones ethylene and H2S is dispensable for full virulence.

12.
Molecules ; 24(19)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554296

ABSTRACT

Forty-five volatile organic compounds (VOCs) were identified or annotated in the mandibular gland reservoir content (MGRC) of the Southeast Asian ant Colobopsis explodens Laciny and Zettel, 2018 (Hymenoptera: Formicidae), using headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography mass spectrometry (GC-MS) and liquid extraction combined with GC-MS. In extension of previous reports on VOCs of C. explodens, members of different compound classes, such as alkanes, aliphatic and aromatic carboxylic acids, and phenolics, were detected. The ketone 2-heptanone and the biochemically related phenolics benzene-1,3,5-triol (phloroglucinol, PG), 1-(2,4,6-trihydroxyphenyl)ethanone (monoacetylphloroglucinol, MAPG), 5,7-dihydroxy-2-methylchromen-4-one (noreugenin), and 1-(3-Acetyl-2,4,6-trihydroxyphenyl)ethanone (2,4-diacetylphloroglucinol, DAPG) dominated the GC-MS chromatograms. The identities of the main phenolics MAPG and noreugenin were further verified by liquid chromatography-high resolution-tandem mass spectrometry (LC-HRMS/MS). A comparative study of MGRC samples originating from three distinct field expeditions revealed differences in the VOC profiles, but the presence and relative abundances of the dominating constituents were largely consistent in all samples. Our study considerably extends the knowledge about the number and type of VOCs occurring in the MGRC of C. explodens. Based on the type of the detected compounds, we propose that the likely irritant and antibiotic phenolic constituents play a role in defense against arthropod opponents or in protection against microbial pathogens.


Subject(s)
Ants/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Animals , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Metabolomics/methods , Molecular Structure , Solid Phase Microextraction
13.
J Vis Exp ; (138)2018 08 26.
Article in English | MEDLINE | ID: mdl-30199024

ABSTRACT

The aim of this manuscript is to present a protocol describing the metabolomic analysis of Bornean 'exploding ants' belonging to the Colobopsis cylindrica (COCY) group. For this purpose, the model species C. explodens is used. Ants belonging to the minor worker caste possess distinctive hypertrophied mandibular glands (MGs). In territorial combat, they use the viscous contents of their enlarged mandibular gland reservoirs (MGRs) to kill rival arthropods in characteristic suicidal 'explosions' by voluntary rupture of the gastral integument (autothysis). We show the dissection of worker ants of this species for the isolation of the gastral portion of the wax-like MGR contents as well as listing the necessary steps required for solvent-extraction of the therein contained volatile compounds with subsequent gas chromatography-mass spectrometry (GC-MS) analysis and putative identification of metabolites contained in the extract. The dissection procedure is performed under cooled conditions and without the use of any dissection buffer solution to minimize the changes in the chemical composition of the MGR contents. After solvent-based extraction of volatile metabolites contained therein, the necessary steps for analyzing the samples via liquid-injection-GC-MS are presented. Lastly, data processing and putative metabolite identification with the use of the open-source software MetaboliteDetector is shown. With this approach, the profiling and identification of volatile metabolites in MGRs of ants belonging to the COCY group via GC-MS and the MetaboliteDetector software become possible.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Salivary Glands/metabolism , Software , Animals , Ants , Volatilization
14.
Mol Biol Cell ; 29(23): 2848-2862, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30256697

ABSTRACT

In yeast, protein kinase A (PKA) adjusts transcriptional profiles, metabolic rates, and cell growth in accord with carbon source availability. PKA affects gene expression mostly via the transcription factors Msn2 and Msn4, two key regulators of the environmental stress response. Here we analyze the role of the PKA-Msn2 signaling module using an Msn2 allele that harbors serine-to-alanine substitutions at six functionally important PKA motifs (Msn2A6) . Expression of Msn2A6 mimics low PKA activity, entails a transcription profile similar to that of respiring cells, and prevents formation of colonies on glucose-containing medium. Furthermore, Msn2A6 leads to high oxygen consumption and hence high respiratory activity. Substantially increased intracellular concentrations of several carbon metabolites, such as trehalose, point to a metabolic adjustment similar to diauxic shift. This partial metabolic switch is the likely cause for the slow-growth phenotype in the presence of glucose. Consistently, Msn2A6 expression does not interfere with growth on ethanol and tolerated is to a limited degree in deletion mutant strains with a gene expression signature corresponding to nonfermentative growth. We propose that the lethality observed in mutants with hampered PKA activity resides in metabolic reprogramming that is initiated by Msn2 hyperactivity.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/physiology , DNA-Binding Proteins/physiology , Gene Frequency , Glucose/metabolism , Phosphorylation , Promoter Regions, Genetic , Response Elements , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology , Signal Transduction , Transcription Factors/physiology , Transcription, Genetic
15.
Sci Rep ; 8(1): 1618, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374187

ABSTRACT

Volatile organic compounds (VOCs) play a crucial role in the communication of plants with other organisms and are possible mediators of plant defence against phytopathogens. Although the role of non-volatile secondary metabolites has been largely characterised in resistant genotypes, the contribution of VOCs to grapevine defence mechanisms against downy mildew (caused by Plasmopara viticola) has not yet been investigated. In this study, more than 50 VOCs from grapevine leaves were annotated/identified by headspace-solid-phase microextraction gas chromatography-mass spectrometry analysis. Following P. viticola inoculation, the abundance of most of these VOCs was higher in resistant (BC4, Kober 5BB, SO4 and Solaris) than in susceptible (Pinot noir) genotypes. The post-inoculation mechanism included the accumulation of 2-ethylfuran, 2-phenylethanol, ß-caryophyllene, ß-cyclocitral, ß-selinene and trans-2-pentenal, which all demonstrated inhibitory activities against downy mildew infections in water suspensions. Moreover, the development of downy mildew symptoms was reduced on leaf disks of susceptible grapevines exposed to air treated with 2-ethylfuran, 2-phenylethanol, ß-cyclocitral or trans-2-pentenal, indicating the efficacy of these VOCs against P. viticola in receiver plant tissues. Our data suggest that VOCs contribute to the defence mechanisms of resistant grapevines and that they may inhibit the development of downy mildew symptoms on both emitting and receiving tissues.


Subject(s)
Anti-Infective Agents/analysis , Oomycetes/growth & development , Phytochemicals/analysis , Plant Diseases/immunology , Vitis/chemistry , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Oomycetes/drug effects , Plant Diseases/microbiology , Vitis/immunology , Vitis/microbiology
16.
Front Microbiol ; 7: 510, 2016.
Article in English | MEDLINE | ID: mdl-27148199

ABSTRACT

One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called "cryptic," often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these "cryptic" metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of "cryptic" antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against antibiotic resistant strains, suggesting a possible application in combinatorial antibiotic treatment against resistant pathogens.

17.
G3 (Bethesda) ; 5(12): 2579-92, 2015 Oct 04.
Article in English | MEDLINE | ID: mdl-26438291

ABSTRACT

Fusarium head blight is a prevalent disease of bread wheat (Triticum aestivum L.), which leads to considerable losses in yield and quality. Quantitative resistance to the causative fungus Fusarium graminearum is poorly understood. We integrated transcriptomics and metabolomics data to dissect the molecular response to the fungus and its main virulence factor, the toxin deoxynivalenol in near-isogenic lines segregating for two resistance quantitative trait loci, Fhb1 and Qfhs.ifa-5A. The data sets portrait rearrangements in the primary metabolism and the translational machinery to counter the fungus and the effects of the toxin and highlight distinct changes in the metabolism of glutamate in lines carrying Qfhs.ifa-5A. These observations are possibly due to the activity of two amino acid permeases located in the quantitative trait locus confidence interval, which may contribute to increased pathogen endurance. Mapping to the highly resolved region of Fhb1 reduced the list of candidates to few genes that are specifically expressed in presence of the quantitative trait loci and in response to the pathogen, which include a receptor-like protein kinase, a protein kinase, and an E3 ubiquitin-protein ligase. On a genome-scale level, the individual subgenomes of hexaploid wheat contribute differentially to defense. In particular, the D subgenome exhibited a pronounced response to the pathogen and contributed significantly to the overall defense response.


Subject(s)
Basal Metabolism , Genomics , Metabolome , Plant Diseases/genetics , Transcriptome , Triticum/genetics , Triticum/metabolism , Computational Biology/methods , Disease Resistance/genetics , Fusarium/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Genomics/methods , Glutamic Acid , Host-Pathogen Interactions/genetics , Metabolic Networks and Pathways , Metabolomics , Plant Diseases/microbiology , Quantitative Trait Loci , RNA Ligase (ATP)/metabolism , Trichothecenes/toxicity , Triticum/drug effects , Triticum/microbiology , Ubiquitination
18.
Metabolomics ; 11(3): 722-738, 2015.
Article in English | MEDLINE | ID: mdl-25972772

ABSTRACT

Fusariumgraminearum and related species commonly infest grains causing the devastating plant disease Fusarium head blight (FHB) and the formation of trichothecene mycotoxins. The most relevant toxin is deoxynivalenol (DON), which acts as a virulence factor of the pathogen. FHB is difficult to control and resistance to this disease is a polygenic trait, mainly mediated by the quantitative trait loci (QTL) Fhb1 and Qfhs.ifa-5A. In this study we established a targeted GC-MS based metabolomics workflow comprising a standardized experimental setup for growth, treatment and sampling of wheat ears and subsequent GC-MS analysis followed by data processing and evaluation of QC measures using tailored statistical and bioinformatics tools. This workflow was applied to wheat samples of six genotypes with varying levels of Fusarium resistance, treated with either DON or water, and harvested 0, 12, 24, 48 and 96 h after treatment. The results suggest that the primary carbohydrate metabolism and transport, the citric acid cycle and the primary nitrogen metabolism of wheat are clearly affected by DON treatment. Most importantly significantly elevated levels of amino acids and derived amines were observed. In particular, the concentrations of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan increased. No clear QTL specific difference in the response could be observed except a generally faster increase in shikimate pathway intermediates in genotypes containing Fhb1. The overall workflow proved to be feasible and facilitated to obtain a more comprehensive picture on the effect of DON on the central metabolism of wheat.

19.
Fungal Genet Biol ; 56: 67-77, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23707931

ABSTRACT

A putative terpene cyclase vir4, which is a member of a secondary metabolite cluster, has been deleted in Trichoderma virens to determine its function. The deletion mutants were compared for volatile production with the wild-type as well as two other Trichoderma spp. This gene cluster was originally predicted to function in the synthesis of viridin and viridiol. However, the experimental evidence demonstrates that this gene cluster is involved in the synthesis of volatile terpene compounds. The entire vir4-containing gene cluster is absent in two other species of Trichoderma, T. atroviride and T. reesei. Neither of these two species synthesizes volatile terpenes associated with this cluster in T. virens. We have thus identified a novel class of volatile fungal sesquiterpenes as well as the gene cluster involved in their biosynthesis.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Metabolic Networks and Pathways/genetics , Terpenes/metabolism , Trichoderma/metabolism , Alkyl and Aryl Transferases/genetics , Gene Deletion , Multigene Family , Trichoderma/enzymology , Trichoderma/genetics
20.
J Agric Food Chem ; 60(36): 9352-63, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22835072

ABSTRACT

In this study an LC-MS/MS multitoxin method covering a total of 247 fungal and bacterial metabolites was applied to the analysis of different foods and feedstuffs from Burkina Faso and Mozambique. Overall, 63 metabolites were determined in 122 samples of mainly maize and groundnuts and a few samples of sorghum, millet, rice, wheat, soy, dried fruits, other processed foods and animal feeds. Aflatoxin B(1) was observed more frequently in maize (Burkina Faso, 50% incidence, median = 23.6 µg/kg; Mozambique, 46% incidence, median = 69.9 µg/kg) than in groundnuts (Burkina Faso, 22% incidence, median = 10.5 µg/kg; Mozambique, 14% incidence, median = 3.4 µg/kg). Fumonisin B(1) concentrations in maize were higher in Mozambique (92% incidence, median = 869 µg/kg) than in Burkina Faso (81% incidence, median = 269 µg/kg). In addition, ochratoxin A, zearalenone, deoxynivalenol, nivalenol, and other less reported mycotoxins such as citrinin, alternariol, cyclopiazonic acid, sterigmatocystin, moniliformin, beauvericin, and enniatins were detected. Up to 28 toxic fungal metabolites were quantitated in a single sample, emphasizing the great variety of mycotoxin coexposure. Most mycotoxins have not been reported before in either country.


Subject(s)
Animal Feed/analysis , Chromatography, High Pressure Liquid/methods , Edible Grain/chemistry , Food Contamination/analysis , Mycotoxins/analysis , Tandem Mass Spectrometry/methods , Burkina Faso , Mozambique
SELECTION OF CITATIONS
SEARCH DETAIL
...