Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836076

ABSTRACT

This study presents an experimental framework with seventeen beams to investigate the impact of loading type, configuration, and through-bolt anchorage on LC-GFRP (Low-Cost Glass-Fiber-Reinforced Polymer) confinement performance. Beams underwent three-point and four-point bending, with LC-GFRP applied in various ways, including U-shaped, side-bonded, and fully wrapped, with and without anchors. The performance of LC-GFRP was compared to CFRP (Carbon-Fiber-Reinforced Polymer) and sisal wraps. LC-GFRP in side-bonded and U-shaped configurations without anchors under three-point bending showed no shear failure, while those under four-point bending without anchors experienced shear failure. With anchors, U-shaped configurations successfully prevented shear failure. The side-bonded, U-shaped, and U-shaped configurations along the full span with anchors demonstrated peak capacity enhancements of 72.11%, 43.66%, and 68.39% higher improvements than the corresponding configurations without anchors, respectively. Wrapping all sides of the beam with LC-GFRP or CFRP prevented shear failure without additional anchors, with complete wrapping being the most efficient method. When anchors were used, significant capacity enhancements were observed. Existing shear strength prediction models were evaluated, highlighting the need for more tailored expressions for LC-GFRP confinement, especially for non-U-shaped configurations.

2.
Environ Sci Pollut Res Int ; 24(15): 13235-13246, 2017 May.
Article in English | MEDLINE | ID: mdl-27662861

ABSTRACT

This research evaluated the feasibility of using vetiver plantlets (Vetiveria zizanioides (L.) Nash) on a floating platform with aeration to degrade phenol (500 mg/L) in illegally dumped industrial wastewater (IDIWW). The IDIWW sample was from the most infamous illegal dumping site at Nong Nae subdistrict, Phanom Sarakham district, Chachoengsao province, Thailand. Laboratory results suggested that phenol degradation by vetiver involves two phases: Phase I, phytopolymerization and phyto-oxidation assisted by root-produced peroxide (H2O2) and peroxidase (POD), followed by phase II, a combination of phase I with enhanced rhizomicrobial degradation. The first 360-400 h of phenol degradation were dominated by phytopolymerization and phyto-oxidation yielding particulate polyphenols (PPP) or particulate organic matter (POM) as by-products, while phenol decreased to around 145 mg/L. In Phase II, synergistically, rhizomicrobial growth was ∼100-folds greater on the roots of the vetiver plantlets than in the IDIWW and participated in the microbial degradation of phenol at this lower phenol concentration, increasing the phenol degradation rate by more than three folds. This combination of phytochemical and rhizomicrobiological processes eliminated phenol in IDIWW in less than 766 h (32 days), while without the vetiver plantlets, phenol degradation by aerated microbial degradation alone may require 235 days. To our knowledge, this is the first that systematically reveals the complete phenol degradation mechanism by vetiver plantlets in real aerated wastewater.


Subject(s)
Phenol , Wastewater , Biodegradation, Environmental , Hydrogen Peroxide , Phytochemicals , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...