Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(3): e14539, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967978

ABSTRACT

Terminal heat stress severely affects field pea production in tropical climates. Identifying and characterizing marker-trait(s) remain vital for breeding heat-tolerant cultivars of field pea. Field pea genotypes are highly variable for plant stature; however, the significance of plant stature for yield stability under high-temperature conditions is not yet well understood. The study aimed to investigate the sensitivity and significance of plant stature toward yield sustainability of field pea under high-temperature environments. A panel of 150 diverse genotypes with variable plant statures [dwarf (<50 cm), semi-dwarf (50-80 cm), medium-tall (80-150 cm)] were grown under late sowing-induced high-temperature environments for two consecutive years (2017-2019). During the first year of the experiment, the late sown crops (15 and 30 days) were exposed to high-temperatures at flowering (+3.5 to +8.1 °C) and grain-filling (+3.3 to +6.1 °C) over timely sown crops. Likewise, elevated temperature during flowering (+3.7 to +5.2 °C) and grain filling (+5.4 to +9.9 °C) were recorded in late-sown environments (delayed by 27 and 54 days) in the next year. Medium-tall genotypes had longer grain-filling duration (7-10%), higher pod-bearing nodes (8-18%) and yield (22-55%), and lower yield losses (13-18%) over semi-dwarf and dwarf genotypes under high-temperature environments. Significant associations of plant height with yield, yield loss, and heat-susceptibility index in high-temperature environments suggested higher heat tolerance capacity of tall-type plants compared to dwarf and semi-dwarf types. GGEbiplot analysis revealed that the heat-tolerant genotypes were all medium tall-type (mean = 108 cm), while the heat-susceptible genotypes were mostly dwarf in stature. Hence, tall-type genotypes had better adaptability to high-temperature environments. Henceforth, the breeding approach for high-temperature tolerance in field pea may be designed by embracing tall-type backgrounds over dwarf plant to develop climate resilient cultivars.

2.
Int J Biometeorol ; 66(12): 2425-2431, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36163396

ABSTRACT

Understanding the crop response to elevated carbon dioxide (e[CO2]) condition is important and has attracted considerable interest owing to the variability and crop-specific response. In mungbean, reports are available regarding the effect of e[CO2] on its growth, physiology and yield. However, no information are available on the germination and vigour status of seeds produced at e[CO2]. Therefore, in the present investigation, mungbean (Virat) was grown in the open top chamber during summer season of 2018 and 2019 to study the implications of e[CO2] (600 ppm) on quality of the harvested seeds (germination and vigour). The exposure of mungbean plant to e[CO2] had no major impact on seed quality as the percent viability (normal seedling + hard seeds) was not reduced. However, in one season (2018), the seed germination (normal seedling) was slightly reduced from 72 to 68%, attributed majorly to an increase in the hard seeds (from 13 to 19%), a predominant form of seed dormancy in mungbean. The changes in seed germination were apparent only in first year of the experiment. Accelerated ageing test (AAT) and storage studies revealed no differences in the vigour of seeds produced at ambient and e[CO2] environments. Also, the seeds from e[CO2] had low protein and sugar but recorded higher starch content than the seeds from ambient [CO2].


Subject(s)
Fabaceae , Vigna , Carbon Dioxide/metabolism , Germination/physiology , Fabaceae/metabolism , Seeds/metabolism , Seedlings
3.
Front Plant Sci ; 13: 861191, 2022.
Article in English | MEDLINE | ID: mdl-35665148

ABSTRACT

Pea (Pisum sativum L.) is one of the most important and productive cool season pulse crops grown throughout the world. Biotic stresses are the crucial constraints in harnessing the potential productivity of pea and warrant dedicated research and developmental efforts to utilize omics resources and advanced breeding techniques to assist rapid and timely development of high-yielding multiple stress-tolerant-resistant varieties. Recently, the pea researcher's community has made notable achievements in conventional and molecular breeding to accelerate its genetic gain. Several quantitative trait loci (QTLs) or markers associated with genes controlling resistance for fusarium wilt, fusarium root rot, powdery mildew, ascochyta blight, rust, common root rot, broomrape, pea enation, and pea seed borne mosaic virus are available for the marker-assisted breeding. The advanced genomic tools such as the availability of comprehensive genetic maps and linked reliable DNA markers hold great promise toward the introgression of resistance genes from different sources to speed up the genetic gain in pea. This review provides a brief account of the achievements made in the recent past regarding genetic and genomic resources' development, inheritance of genes controlling various biotic stress responses and genes controlling pathogenesis in disease causing organisms, genes/QTLs mapping, and transcriptomic and proteomic advances. Moreover, the emerging new breeding approaches such as transgenics, genome editing, genomic selection, epigenetic breeding, and speed breeding hold great promise to transform pea breeding. Overall, the judicious amalgamation of conventional and modern omics-enabled breeding strategies will augment the genetic gain and could hasten the development of biotic stress-resistant cultivars to sustain pea production under changing climate. The present review encompasses at one platform the research accomplishment made so far in pea improvement with respect to major biotic stresses and the way forward to enhance pea productivity through advanced genomic tools and technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...