Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Nat Commun ; 15(1): 2220, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472221

ABSTRACT

Circulating cell-free DNA (cfDNA) fragments have characteristics that are specific to the cell types that release them. Current methods for cfDNA deconvolution typically use disease tailored marker selection in a limited number of bulk tissues or cell lines. Here, we utilize single cell transcriptome data as a comprehensive cellular reference set for disease-agnostic cfDNA cell-of-origin analysis. We correlate cfDNA-inferred nucleosome spacing with gene expression to rank the relative contribution of over 490 cell types to plasma cfDNA. In 744 healthy individuals and patients, we uncover cell type signatures in support of emerging disease paradigms in oncology and prenatal care. We train predictive models that can differentiate patients with colorectal cancer (84.7%), early-stage breast cancer (90.1%), multiple myeloma (AUC 95.0%), and preeclampsia (88.3%) from matched controls. Importantly, our approach performs well in ultra-low coverage cfDNA datasets and can be readily transferred to diverse clinical settings for the expansion of liquid biopsy.


Subject(s)
Cell-Free Nucleic Acids , Humans , DNA Fragmentation , Transcriptome , Biology , Biomarkers, Tumor/genetics
3.
Eur J Hum Genet ; 32(1): 31-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37029316

ABSTRACT

Maternally inherited 15q11-q13 duplications are generally found to cause more severe neurodevelopmental anomalies compared to paternally inherited duplications. However, this assessment is mainly inferred from the study of patient populations, causing an ascertainment bias towards patients at the more severe end of the phenotypic spectrum. Here, we analyze the low coverage genome-wide cell-free DNA sequencing data obtained from pregnant women during non-invasive prenatal screening (NIPS). We detect 23 15q11-q13 duplications in 333,187 pregnant women (0.0069%), with an approximately equal distribution between maternal and paternal duplications. Maternally inherited duplications are always associated with a clinical phenotype (ranging from learning difficulties to intellectual impairment, epilepsy and psychiatric disorders), while paternal duplications are normal or associated with milder phenotypes (mild learning difficulties and dyslexia). This data corroborates the difference in impact between paternally and maternally inherited 15q11-q13 duplications, contributing to the improvement of genetic counselling. We recommend reporting 15q11-q13 duplications identified during genome-wide NIPS with appropriate genetic counselling for these pregnant women in the interest of both mothers and future children.


Subject(s)
Mothers , Paternal Inheritance , Pregnancy , Child , Humans , Female , Alleles , Phenotype , Chromosomes, Human, Pair 15/genetics
4.
Appl Environ Microbiol ; 89(10): e0115523, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37819078

ABSTRACT

While the evolution of antimicrobial resistance is well studied in free-living bacteria, information on resistance development in dense and diverse biofilm communities is largely lacking. Therefore, we explored how the social interactions in a duo-species biofilm composed of the brewery isolates Pseudomonas rhodesiae and Raoultella terrigena influence the adaptation to the broad-spectrum antimicrobial sulfathiazole. Previously, we showed that the competition between these brewery isolates enhances the antimicrobial tolerance of P. rhodesiae. Here, we found that this enhanced tolerance in duo-species biofilms is associated with a strongly increased antimicrobial resistance development in P. rhodesiae. Whereas P. rhodesiae was not able to evolve resistance against sulfathiazole in monospecies conditions, it rapidly evolved resistance in the majority of the duo-species communities. Although the initial presence of R. terrigena was thus required for P. rhodesiae to acquire resistance, the resistance mechanisms did not depend on the presence of R. terrigena. Whole genome sequencing of resistant P. rhodesiae clones showed no clear mutational hot spots. This indicates that the acquired resistance phenotype depends on complex interactions between low-frequency mutations in the genetic background of the strains. We hypothesize that the increased tolerance in duo-species conditions promotes resistance by enhancing the selection of partially resistant mutants and opening up novel evolutionary trajectories that enable such genetic interactions. This hypothesis is reinforced by experimentally excluding potential effects of increased initial population size, enhanced mutation rate, and horizontal gene transfer. Altogether, our observations suggest that the community mode of life and the social interactions therein strongly affect the accessible evolutionary pathways toward antimicrobial resistance.IMPORTANCEAntimicrobial resistance is one of the most studied bacterial properties due to its enormous clinical and industrial relevance; however, most research focuses on resistance development of a single species in isolation. In the present study, we showed that resistance evolution of brewery isolates can differ greatly between single- and mixed-species conditions. Specifically, we observed that the development of antimicrobial resistance in certain species can be significantly enhanced in co-culture as compared to the single-species conditions. Overall, the current study emphasizes the need of considering the within bacterial interactions in microbial communities when evaluating antimicrobial treatments and resistance evolution.


Subject(s)
Anti-Infective Agents , Anti-Infective Agents/pharmacology , Biofilms , Bacteria/genetics , Phenotype , Sulfathiazoles/pharmacology , Anti-Bacterial Agents/pharmacology
5.
Prenat Diagn ; 43(10): 1333-1343, 2023 09.
Article in English | MEDLINE | ID: mdl-37592442

ABSTRACT

OBJECTIVES: To assess maternal characteristics and comorbidities in patients with persistent uninterpretable non-invasive prenatal testing (NIPT) and to evaluate the association with adverse pregnancy outcome in a general risk population. METHODS: A retrospective cohort study (July 2017-December 2020) was conducted of patients with persistent uninterpretable NIPT samples. Maternal characteristics and pregnancy outcomes were compared with the general Belgian obstetric population. RESULTS: Of the 148 patients with persistent uninterpretable NIPT, 37 cases were due to a low fetal fraction (LFF) and 111 due to a low quality score (LQS). Both groups (LFF, LQS) showed more obesity (60.6%, 42.4%), multiple pregnancies (18.9%, 4.5%) and more obstetrical complications. In the LQS group, a high rate of maternal auto-immune disorders (30.6%) was seen and hypertensive complications (17.6%), preterm birth (17.6%) and neonatal intensive care unit (NICU) admission (22%) were significantly increased. In the LFF group hypertensive complications (21.6%), gestational diabetes (20.6%), preterm birth (27%), SGA (25.6%), major congenital malformations (11.4%), c-section rate (51.4%) and NICU admission (34.9%) were significantly increased. Chromosomal abnormalities were not increased in both groups. CONCLUSIONS: Patients with persistent uninterpretable NIPT have significantly more maternal obesity, comorbidities and adverse pregnancy outcome than the general population and should receive high-risk pregnancy care. Distinguishing between LFF and LQS optimizes counseling because maternal characteristics and pregnancy outcome differ between these groups.


Subject(s)
Premature Birth , Infant, Newborn , Humans , Female , Pregnancy , Premature Birth/diagnosis , Premature Birth/epidemiology , Retrospective Studies , Prenatal Care , Fetus , Family
6.
NPJ Genom Med ; 7(1): 55, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36100603

ABSTRACT

The early detection of tissue and organ damage associated with autoimmune diseases (AID) has been identified as key to improve long-term survival, but non-invasive biomarkers are lacking. Elevated cell-free DNA (cfDNA) levels have been observed in AID and inflammatory bowel disease (IBD), prompting interest to use cfDNA as a potential non-invasive diagnostic and prognostic biomarker. Despite these known disease-related changes in concentration, it remains impossible to identify AID and IBD patients through cfDNA analysis alone. By using unsupervised clustering on large sets of shallow whole-genome sequencing (sWGS) cfDNA data, we uncover AID- and IBD-specific genome-wide patterns in plasma cfDNA in both the obstetric and general AID and IBD populations. We demonstrate that pregnant women with AID and IBD have higher odds of receiving inconclusive non-invasive prenatal screening (NIPS) results. Supervised learning of the genome-wide patterns allows AID prediction with 50% sensitivity at 95% specificity. Importantly, the method has the potential to identify pregnant women with AID during routine NIPS. Since AID pregnancies have an increased risk of severe complications, early recognition or detection of new-onset AID can redirect pregnancy management and limit potential adverse events. This method opens up new avenues for screening, diagnosis and monitoring of AID and IBD.

7.
Eur J Hum Genet ; 30(12): 1323-1330, 2022 12.
Article in English | MEDLINE | ID: mdl-35896702

ABSTRACT

Non-invasive prenatal testing has been introduced for the detection of Trisomy 13, 18, and 21. Using genome-wide screening also other "rare" autosomal trisomies (RATs) can be detected with a frequency about half the frequency of the common trisomies in the large population-based studies. Large prospective studies and clear clinical guidelines are lacking to provide adequate counseling and management to those who are confronted with a RAT as a healthcare professional or patient. In this review we reviewed the current knowledge of the most common RATs. We compiled clinical relevant parameters such as incidence, meiotic or mitotic origin, the risk of fetal (mosaic) aneuploidy, clinical manifestations of fetal mosaicism for a RAT, the effect of confined placental mosaicism on placental function and the risk of uniparental disomy (UPD). Finally, we identified gaps in the knowledge on RATs and highlight areas of future research. This overview may serve as a first guide for prenatal management for each of these RATs.


Subject(s)
Placenta , Trisomy , Female , Pregnancy , Humans , Trisomy/diagnosis , Trisomy/genetics , Prospective Studies , Mosaicism , Uniparental Disomy , Prenatal Diagnosis
8.
Clin Chem ; 68(9): 1164-1176, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35769009

ABSTRACT

BACKGROUND: Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, diagnosis, and monitoring. We hypothesized that mining the patterns of cfDNA shallow whole-genome sequencing datasets from patients with cancer could improve cancer detection. METHODS: By applying unsupervised clustering and supervised machine learning on large cfDNA shallow whole-genome sequencing datasets from healthy individuals (n = 367) and patients with different hematological (n = 238) and solid malignancies (n = 320), we identified cfDNA signatures that enabled cancer detection and typing. RESULTS: Unsupervised clustering revealed cancer type-specific sub-grouping. Classification using a supervised machine learning model yielded accuracies of 96% and 65% in discriminating hematological and solid malignancies from healthy controls, respectively. The accuracy of disease type prediction was 85% and 70% for the hematological and solid cancers, respectively. The potential utility of managing a specific cancer was demonstrated by classifying benign from invasive and borderline adnexal masses with an area under the curve of 0.87 and 0.74, respectively. CONCLUSIONS: This approach provides a generic analytical strategy for non-invasive pan-cancer detection and cancer type prediction.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Biomarkers, Tumor/genetics , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Whole Genome Sequencing
9.
Obstet Gynecol ; 137(6): 1102-1108, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33957658

ABSTRACT

OBJECTIVE: To evaluate the accuracy and diagnostic value of genome-wide noninvasive prenatal testing (NIPT) for the detection of fetal aneuploidies in multiple gestations, with a focus on dichorionic-diamniotic twin pregnancies. METHODS: We performed a retrospective cohort study including data from pregnant women with a twin or higher-order gestation who underwent genome-wide NIPT at one of the eight Belgian genetic centers between November 1, 2013, and March 1, 2020. Chorionicity and amnionicity were determined by ultrasonography. Follow-up invasive testing was carried out in the event of positive NIPT results. Sensitivity and specificity were calculated for the detection of trisomy 21, 18, and 13 in the dichorionic-diamniotic twin cohort. RESULTS: Unique NIPT analyses were performed for 4,150 pregnant women with a multiple gestation and an additional 767 with vanishing gestations. The failure rate in multiple gestations excluding vanishing gestations ranged from 0% to 11.7% among the different genetic centers. Overall, the failure rate was 4.8%, which could be reduced to 1.2% after single resampling. There were no common fetal trisomies detected among the 86 monochorionic-monoamniotic and 25 triplet cases. Two monochorionic-diamniotic twins had an NIPT result indicative of a trisomy 21, which was confirmed in both fetuses. Among 2,716 dichorionic-diamniotic twin gestations, a sensitivity of 100% (95% CI 74.12-100%) and a specificity of 100% (95% CI 99.86-100%) was reached for trisomy 21 (n=12). For trisomy 18 (n=3), the respective values were 75% (95% CI 30.06-95.44%) sensitivity and 100% (95% CI 99.86-100%) specificity, and for trisomy 13 (n=2), 100% (95% CI 20.65-100%) sensitivity and 99.96% (95% CI 99.79-99.99%) specificity. In the vanishing gestation group, 28 NIPT results were positive for trisomy 21, 18, or 13, with only five confirmed trisomies. CONCLUSION: Genome-wide NIPT performed accurately for detection of aneuploidy in dichorionic-diamniotic twin gestations.


Subject(s)
Down Syndrome/diagnosis , Fetal Resorption , Noninvasive Prenatal Testing , Pregnancy, Multiple , Trisomy 13 Syndrome/diagnosis , Trisomy 18 Syndrome/diagnosis , Amniocentesis , Amnion/diagnostic imaging , Cell-Free Nucleic Acids/analysis , Chorion/diagnostic imaging , Diagnostic Errors , False Negative Reactions , Female , Fetal Resorption/diagnosis , Fetal Resorption/genetics , Genome, Human , Humans , Pregnancy , Pregnancy, Quadruplet , Pregnancy, Triplet , Pregnancy, Twin , Retrospective Studies , Sensitivity and Specificity , Trisomy
10.
Biofouling ; 37(1): 61-77, 2021 01.
Article in English | MEDLINE | ID: mdl-33573402

ABSTRACT

Cleaning and disinfection protocols are not always able to remove biofilm microbes present in breweries, indicating that novel anti-biofilm strategies are needed. The preventive activities of three in-house synthesized members of the 2-aminoimidazole class of anti-biofilm molecules were studied against 17 natural brewery biofilms and benchmarked against 18 known inhibitors. Two 2-aminoimidazoles belonged to the top six inhibitors, which were retested against 12 defined brewery biofilm models. For the three best inhibitors, tannic acid (n° 1), 2-aminoimidazole imi-AAC-5 (n° 2), and baicalein (n° 3), the effect on the microbial metabolic activity was evaluated. Here, the top three inhibitors showed similar effectiveness, with baicalein possessing a slightly higher efficacy. Even though the 2-aminoimidazole was the second-best inhibitor, it showed a lower biocidal activity than tannic acid, making it less prone to resistance evolution. Overall, this study supports the potential of 2-aminoimidazoles as a preventive anti-biofilm strategy.


Subject(s)
Anti-Bacterial Agents , Biofilms , Anti-Bacterial Agents/pharmacology , Imidazoles/pharmacology , Structure-Activity Relationship
11.
ISME J ; 12(8): 2061-2075, 2018 08.
Article in English | MEDLINE | ID: mdl-29858577

ABSTRACT

Genetic diversity often enhances the tolerance of microbial communities against antimicrobial treatment. However the sociobiology underlying this antimicrobial tolerance remains largely unexplored. Here we analyze how inter-species interactions can increase antimicrobial tolerance. We apply our approach to 17 industrially relevant multispecies biofilm models, based on species isolated from 58 contaminating biofilms in three breweries. Sulfathiazole was used as antimicrobial agent because it showed the highest activity out of 22 biofilm inhibitors tested. Our analysis reveals that competitive interactions dominate among species within brewery biofilms. We show that antimicrobial treatment can reduce the level of competition and therefore cause a subset of species to bloom. The result is a 1.2-42.7-fold lower percentage inhibition of these species and increased overall tolerance. In addition, we show that the presence of Raoultella can also directly enhance the inherent tolerance of Pseudomonas to antimicrobial treatment, either because the species protect each other or because they induce specific tolerance phenotypes as a response to competitors. Overall, our study emphasizes that the dominance of competitive interactions is central to the enhanced antimicrobial tolerance of the multispecies biofilms, and that the activity of antimicrobials against multispecies biofilms cannot be predicted based on their effect against monocultures.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biofilms/drug effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Drug Resistance, Bacterial , Wine/analysis , Wine/microbiology
12.
J Bacteriol ; 199(22): e00403-17, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28808130

ABSTRACT

The ASM Conference on Mechanisms of Interbacterial Cooperation and Competition was held in Washington DC, from 1 to 4 March 2017. The conference provided an international forum for sociomicrobiologists from different disciplines to present and discuss new findings. The meeting covered a wide range of topics, spanning molecular mechanisms, ecology, evolution, computation and manipulation of interbacterial interactions, and encompassed social communities in medicine, the natural environment, and industry. This report summarizes the presentations and emerging themes.

13.
FEMS Microbiol Rev ; 40(3): 373-97, 2016 05.
Article in English | MEDLINE | ID: mdl-26895713

ABSTRACT

Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , Biological Evolution , Biodiversity , Microbial Viability , Models, Biological , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...