Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-14623492

ABSTRACT

A role of indices of oxidative stress, oxidative injury, and abnormal membrane phospholipid, specifically the phospholipid essential polyunsaturated fatty acids (EPUFAs) metabolism has been suggested based on studies in separate groups of patients with or without medication. The current study investigated the relationship between these biochemical measures in first-episode psychotic patients (N=16) at baseline and after 6 months of antipsychotic treatment (N=5 each with risperidone and olanzapine) and compared them to matched normal subjects. The indices of oxidative stress included: antioxidant enzymes; superoxide dismutase, glutathione peroxidase and catalase; and the oxidative injury as the levels of plasma lipid peroxides. The key membrane EPUFA's been; linolenic acid, arachidonic acid, nervonic acid, docosapentaenoic acid and docosahexaenoic acid. Furthermore, the changes in these biochemical measures were correlated with clinical symptomatology. Data indicated that, at baseline, reduced levels of antioxidant enzymes were associated with increased plasma lipid peroxides and reduced membrane EPUFAs, particularly omega-3 fatty acids. Furthermore, these biochemical measures normalized after 6 months of antipsychotic treatment. Parallel-improved psychopathology indicated that membrane EPUFA status might be partly affected by oxidative damage, which together may contribute to the pathophysiology and thereby, psychopathology of schizophrenia. These data also support the augmentation of antipsychotic treatment by supplementation with a combination of antioxidants and omega-3 fatty acids.


Subject(s)
Antipsychotic Agents/therapeutic use , Erythrocyte Membrane/metabolism , Fatty Acids, Essential/blood , Psychotic Disorders/blood , Adult , Alkanes/blood , Antioxidants/therapeutic use , Drug Therapy, Combination , Erythrocyte Membrane/drug effects , Erythrocytes/enzymology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Unsaturated/blood , Humans , Lipid Peroxides/blood , Oxidative Stress
2.
J Neurochem ; 86(5): 1089-100, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12911617

ABSTRACT

Apolipoprotein-D (apoD), a member of the lipocalin family of proteins, binds to arachidonic acid and cholesterol among other hydrophobic molecules. Recently, elevated apoD levels have been reported in the post-mortem brains, as well as plasma, of schizophrenic patients and in rodent brains after chronic treatment with clozapine (CLOZ). These findings and the evidence for altered membrane lipid metabolism in schizophrenia suggest that apoD may have a role in the pathophysiology of illness, and also in the differential clinical outcome following treatment with typical and atypical antipsychotic drugs. Here, we compared the effects of these antipsychotics on the expression of apoD in rat brain. Chronic treatment with typical antipsychotic, haloperidol (HAL) reduced apoD expression in hippocampus, piriform cortex and caudate-putamen (p = 0.027-0.002), whereas atypical antipsychotics, risperidone (RISP) and olanzapine (OLZ) increased (p = 0.051 to < 0.001 and p = 0.048 to < 0.001, respectively) apoD expression. In hippocampus, HAL-induced changes were present in CA1, CA3 and dentate gyrus, however, apoD levels in motor cortex were unchanged. There were also very dramatic effects of HAL on the neuronal morphology, particularly, cellular shrinkage and disorganization with the loss of neuropil. Post-treatment, either with RISP or OLZ, was very effective in restoring the HAL-induced reduction of apoD, as well as cellular morphology. Similarly, pre-treatments were also effective, but slightly less than post-treatment, in preventing HAL-induced reduction of apoD. The increased expression of apoD by atypical antipsychotics may reflect a novel molecular mechanism underlying their favorable effects compared with HAL on cognition, negative symptoms and extra-pyramidal symptoms in schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Apolipoproteins/metabolism , Brain/drug effects , Brain/metabolism , Pirenzepine/analogs & derivatives , Animals , Apolipoproteins/drug effects , Apolipoproteins D , Benzodiazepines , Brain/cytology , Haloperidol/antagonists & inhibitors , Haloperidol/pharmacology , Male , Neuronal Plasticity/drug effects , Neurons/cytology , Neurons/drug effects , Olanzapine , Pirenzepine/pharmacology , Rats , Rats, Wistar , Risperidone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...