Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21263296

ABSTRACT

IntroductionFervorous investigation and dialogue surrounding the true number of SARS-CoV-2 related deaths and implied infection fatality rates in India have been ongoing throughout the pandemic, and especially pronounced during the nations devastating second wave. We aim to synthesize the existing literature on the true SARS-CoV-2 excess deaths and infection fatality rates (IFR) in India, through a systematic search followed by viable meta-analysis. We then provide updated epidemiological model-based estimates of the wave 1, wave 2 and combined IFRs using an extension of the Susceptible-Exposed-Infected-Removed (SEIR) model, using data from April 1, 2020 to June 30, 2021. MethodsFollowing PRISMA guidelines, the databases PubMed, Embase, Global Index Medicus, as well as BioRxiv, MedRxiv, and SSRN for preprints (accessed through iSearch), were searched on July 3, 2021 (with results verified through August 15, 2021). Altogether using a two-step approach, 4,765 initial citations were screened resulting in 37 citations included in the narrative review and 19 studies with 41 datapoints included in the quantitative synthesis. Using a random effects model with DerSimonian-Laird estimation, we meta-analyze IFR1 which is defined as the ratio of the total number of observed reported deaths divided by the total number of estimated infections and IFR2 (which accounts for death underreporting in the numerator of IFR1). For the latter, we provide lower and upper bounds based on the available range of estimates of death undercounting, often arising from an excess death calculation. The primary focus is to estimate pooled nationwide estimates of IFRs with the secondary goal of estimating pooled regional and state-specific estimates for SARS-CoV-2 related IFRs in India. We also try to stratify our empirical results across the first and the second wave. In tandem, we present updated SEIR model estimates of IFRs for waves 1, 2, and combined across the waves with observed case and death count data from April 1, 2020 to June 30, 2021. ResultsFor India countrywide, underreporting factors (URF) for cases (sourced from serosurveys) range from 14.3-29.1 in the four nationwide serosurveys; URFs for deaths (sourced from excess deaths reports) range from 4.4-11.9 with cumulative excess deaths ranging from 1.79-4.9 million (as of June 2021). Nationwide pooled IFR1 and IFR2 estimates for India are 0.097% (95% confidence interval [CI]: 0.067 - 0.140) and 0.365% (95% CI: 0.264 - 0.504) to 0.485% (95% CI: 0.344 - 0.685), respectively, again noting that IFR2 changes as excess deaths estimates vary. Among the included studies in this meta-analysis, the IFR1 generally appear to decrease over time from the earliest study end date to the latest study end date (from 4 June 2020 to 6 July 2021, IFR1 changed from 0.199 to 0.055%), whereas a similar trend is not as readily evident for IFR2 due to the wide variation in excess death estimates (from 4 June 2020 to 6 July 2021, IFR2 ranged from (0.290-1.316) to (0.241-0.651) %). Nationwide SEIR model-based combined estimates for IFR1 and IFR2 are 0.101% (95% CI: 0.097 - 0.116) and 0.367% (95% CI: 0.358 - 0.383), respectively, which largely reconcile with the empirical findings and concur with the lower end of the excess death estimates. An advantage of such epidemiological models is the ability to produce daily estimates with updated data with the disadvantages being that these estimates are subject to numerous assumptions, arduousness of validation and not directly using the available excess death data. Whether one uses empirical data or model-based estimation, it is evident that IFR2 is at least 3.6 times more than IFR1. ConclusionWhen incorporating case and death underreporting, the meta-analyzed cumulative infection fatality rate in India varies from 0.36%-0.48%, with a case underreporting factor ranging from 25-30 and a death underreporting factor ranging from 4-12. This implies, by June 30, 2021, India may have seen nearly 900 million infections and 1.7-4.9 million deaths when the reported numbers stood at 30.4 million cases and 412 thousand deaths (covid19india.org) with an observed case fatality rate (CFR) of 1.35%. We reiterate the need for timely and disaggregated infection and fatality data to examine the burden of the virus by age and other demographics. Large degrees of nationwide and state-specific death undercounting reinforce the call to improve death reporting within India.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20067256

ABSTRACT

ImportanceIndia has taken strong and early public health measures for arresting the spread of the COVID-19 epidemic. With only 536 COVID-19 cases and 11 fatalities, India - a democracy of 1.34 billion people - took the historic decision of a 21-day national lockdown on March 25. The lockdown was further extended to May 3rd, soon after the analysis of this paper was completed. ObjectiveTo study the short- and long-term impact of an initial 21-day lockdown on the total number of COVID-19 cases in India compared to other less severe non-pharmaceutical interventions using epidemiological forecasting models and Bayesian estimation algorithms; to compare effects of hypothetical durations of lockdown from an epidemiological perspective; to study alternative explanations for slower growth rate of the virus outbreak in India, including exploring the association of the number of cases and average monthly temperature; and finally, to outline the pivotal role of reliable and transparent data, reproducible data science methods, tools and products as we reopen the country and prepare for a post lock-down phase of the pandemic. Design, Setting, and ParticipantsWe use the daily data on the number of COVID-19 cases, of recovered and of deaths from March 1 until April 7, 2020 from the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Additionally, we use COVID-19 incidence counts data from Kaggle and the monthly average temperature of major cities across the world from Wikipedia. Main Outcome and MeasuresThe current time-series data on daily proportions of cases and removed (recovered and death combined) from India are analyzed using an extended version of the standard SIR (susceptible, infected, and removed) model. The eSIR model incorporates time-varying transmission rates that help us predict the effect of lockdown compared to other hypothetical interventions on the number of cases at future time points. A Markov Chain Monte Carlo implementation of this model provided predicted proportions of the cases at future time points along with credible intervals (CI). ResultsOur predicted cumulative number of COVID-19 cases in India on April 30 assuming a 1-week delay in peoples adherence to a 21-day lockdown (March 25 - April 14) and a gradual, moderate resumption of daily activities after April 14 is 9,181 with upper 95% CI of 72,245. In comparison, the predicted cumulative number of cases under "no intervention" and "social distancing and travel bans without lockdown" are 358 thousand and 46 thousand (upper 95% CI of nearly 2.3 million and 0.3 million) respectively. An effective lockdown can prevent roughly 343 thousand (upper 95% CI 1.8 million) and 2.4 million (upper 95% CI 38.4 million) COVID-19 cases nationwide compared to social distancing alone by May 15 and June 15, respectively. When comparing a 21-day lockdown with a hypothetical lockdown of longer duration, we find that 28-, 42-, and 56-day lockdowns can approximately prevent 238 thousand (upper 95% CI 2.3 million), 622 thousand (upper 95% CI 4.3 million), 781 thousand (upper 95% CI 4.6 million) cases by June 15, respectively. We find some suggestive evidence that the COVID-19 incidence rates worldwide are negatively associated with temperature in a crude unadjusted analysis with Pearson correlation estimates [95% confidence interval] between average monthly temperature and total monthly incidence around the world being -0.185 [-0.548, 0.236] for January, -0.110 [-0.362, 0.157] for February, and -0.173 [-0.314, -0.026] for March. Conclusions and RelevanceThe lockdown, if implemented correctly in the end, has a high chance of reducing the total number of COVID-19 cases in the short term, and buy India invaluable time to prepare its healthcare and disease monitoring system. Our analysis shows we need to have some measures of suppression in place after the lockdown for the best outcome. We cannot heavily rely on the hypothetical prevention governed by meteorological factors such as temperature based on current evidence. From an epidemiological perspective, a longer lockdown between 42-56 days is preferable. However, the lockdown comes at a tremendous price to social and economic health through a contagion process not dissimilar to that of the coronavirus itself. Data can play a defining role as we design post-lockdown testing, reopening and resource allocation strategies. SoftwareOur contribution to data science includes an interactive and dynamic app (covind19.org) with short- and long-term projections updated daily that can help inform policy and practice related to COVID-19 in India. Anyone can visualize the observed data for India and create predictions under hypothetical scenarios with quantification of uncertainties. We make our prediction codes freely available (https://github.com/umich-cphds/cov-ind-19) for reproducible science and for other COVID-19 affected countries to use them for their prediction and data visualization work.

SELECTION OF CITATIONS
SEARCH DETAIL
...