Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 165: 105251, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33548594

ABSTRACT

Significant mortality of Crassostrea gigas juveniles is observed systematically every year worldwide. Pacific Oyster Mortality Syndrome (POMS) is caused by Ostreid Herpesvirus 1 (OsHV-1) infection leading to immune suppression, followed by bacteraemia caused by a consortium of opportunistic bacteria. Using an in-situ approach and pelagic chambers, our aim in this study was to identify pathogen dynamics in oyster flesh and in the water column during the course of a mortality episode in the Mediterranean Thau lagoon (France). OsHV-1 concentrations in oyster flesh increased before the first clinical symptoms of the disease appeared, reached maximum concentrations during the moribund phase and the mortality peak. The structure of the bacterial community associated with oyster flesh changed in favour of bacterial genera previously associated with oyster mortality including Vibrio, Arcobacter, Psychrobium, and Psychrilyobacter. During the oyster mortality episode, releases of OsHV-1 and opportunistic bacteria were observed, in succession, in the water surrounding the oyster lanterns. These releases may favour the spread of disease within oyster farms and potentially impact other marine species, thereby reducing marine biodiversity in shellfish farming areas.


Subject(s)
Crassostrea , Vibrio , Animals , France , Shellfish
2.
PLoS One ; 14(4): e0214933, 2019.
Article in English | MEDLINE | ID: mdl-30951553

ABSTRACT

Phytoplankton blooms are an important, widespread phenomenon in open oceans, coastal waters and freshwaters, supporting food webs and essential ecosystem services. Blooms are even more important in exploited coastal waters for maintaining high resource production. However, the environmental factors driving blooms in shallow productive coastal waters are still unclear, making it difficult to assess how environmental fluctuations influence bloom phenology and productivity. To gain insights into bloom phenology, Chl a fluorescence and meteorological and hydrological parameters were monitored at high-frequency (15 min) and nutrient concentrations and phytoplankton abundance and diversity, were monitored weekly in a typical Mediterranean shallow coastal system (Thau Lagoon). This study was carried out from winter to late spring in two successive years with different climatic conditions: 2014/2015 was typical, but the winter of 2015/2016 was the warmest on record. Rising water temperature was the main driver of phytoplankton blooms. However, blooms were sometimes correlated with winds and sometimes correlated with salinity, suggesting nutrients were supplied by water transport via winds, saltier seawater intake, rain and water flow events. This finding indicates the joint role of these factors in determining the success of phytoplankton blooms. Furthermore, interannual variability showed that winter water temperature was higher in 2016 than in 2015, resulting in lower phytoplankton biomass accumulation in the following spring. Moreover, the phytoplankton abundances and diversity also changed: cyanobacteria (< 1 µm), picoeukaryotes (< 1 µm) and nanoeukaryotes (3-6 µm) increased to the detriment of larger phytoplankton such as diatoms. Water temperature is a key factor affecting phytoplankton bloom dynamics in shallow productive coastal waters and could become crucial with future global warming by modifying bloom phenology and changing phytoplankton community structure, in turn affecting the entire food web and ecosystem services.


Subject(s)
Eutrophication/physiology , Models, Biological , Phytoplankton/growth & development , Seasons , Temperature , Mediterranean Sea
SELECTION OF CITATIONS
SEARCH DETAIL
...