Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Histochem ; 120(8): 846-857, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30292321

ABSTRACT

The human dura mater encephali is a well innervated and vascularized membrane. Its vascular system plays a crucial role in disorders and pathological cases like dural hematoma, meningitis, and different headache types. To investigate these diseases mouse models are increasingly being used. However, the literature on the vascular system of the mouse dura mater is sparse and explicit studies concerned exclusively with its vasculature are lacking. Here we present a detailed light and scanning electron microscopic investigation of the supratentorial dura mater of the mouse species, with a focus on the largest part of it, the parietal dura mater. By utilizing different immunohistochemical and classical staining methods, a "cartography" of the vascular system was achieved. Additionally, the different blood vessel types with their mural cells were characterized. In contrast to humans, no arteries were found in the mouse parietal dura mater. Its supply is assured through frontolateral and occipital localized arteriolar branches. These arteriolar vessels exhibit in some specimens arteriolar anastomoses with one another. The venous blood is drained to the superior sagittal and transverse sinus through satellite venules accompanying the arterioles or through solitary venules. In all samples, large ruptured venules were identified in the frontolateral dural area. Scanning electron microscopy revealed that these vessels were ruptured on the dorsal side (skull bones-oriented side) of the dura. Our results contribute to the anatomical data on the mouse species and may set up a basis for fundamental investigation of disorders, for which the role of dural blood vessels is not yet clarified.


Subject(s)
Capillaries/anatomy & histology , Dura Mater/pathology , Animals , Capillaries/pathology , Dura Mater/anatomy & histology , Female , Immunohistochemistry , Mice , Microscopy, Electron, Scanning
2.
PLoS One ; 13(7): e0198765, 2018.
Article in English | MEDLINE | ID: mdl-29995896

ABSTRACT

Bioluminescence is a fascinating phenomenon and can be found in many different organisms including fish. It has been suggested that bioluminescence is used for example for defense, prey attraction, and for intraspecific communication to attract for example sexual partners. The flashlight fish, Anomalops katoptron (A. katoptron), is a nocturnal fish that produces bioluminescence and lives in shallow waters, which makes it ideal for laboratory studies. In order to understand A. katoptron's ability to detect bioluminescent light (480 to 490 nm) at night, we characterized the visual system adaptation of A. katoptron using phylogenetic, electrophysiological and behavioral studies. We found that the retinae of A. katoptron contain rods and sparse cones. A. katoptron retinae express two main visual pigments, rhodopsin (RH1), and to a lesser extent, rhodopsin-like opsin (RH2). Interestingly, recombinant RH1 and RH2 are maximally sensitive to a wavelength of approximately 490 nm light (λmax), which correspond to the spectral peak of in vivo electroretinogram (ERG) measurements. In addition, behavioral assays revealed that A. katoptron is attracted by low intensity blue but not red light. Collectively, our results suggest that the A. katoptron visual system is optimized to detect blue light in the frequency range of its own bioluminescence and residual starlight.


Subject(s)
Adaptation, Physiological , Fish Proteins/genetics , Opsins/genetics , Retinal Cone Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/physiology , Rhodopsin/genetics , Amino Acid Sequence , Animals , Electroretinography , Fish Proteins/metabolism , Fishes , Gene Expression , HEK293 Cells , Humans , Light , Luminescence , Luminescent Measurements/methods , Opsins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retinal Cone Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/cytology , Rhodopsin/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
3.
J Anat ; 228(1): 113-24, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26552989

ABSTRACT

A long rostrum has distinct advantages for prey capture in an aquatic or semi-aquatic environment but at the same time poses severe problems concerning stability during biting. We here investigate the role of the septum nasi of brevirostrine crocodilians for load-absorption during mastication. Histologically, both the septum nasi and the septum interorbitale consist of hyaline cartilage and therefore mainly resist compression. However, we identified a strand of tissue extending longitudinally below the septum nasi that is characterized by a high content of collagenous and elastic fibers and could therefore resist tensile stresses. This strand of tissue is connected with the m. pterygoideus anterior. Two-dimensional finite element modeling shows that minimization of bending in the crocodilian skull can only be achieved if tensile stresses are counteracted by a strand of tissue. We propose that the newly identified strand of tissue acts as an active tension chord necessary for stabilizing the long rostrum of crocodilians during biting by transforming the high bending stress of the rostrum into moderate compressive stress.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Cartilage/physiology , Mastication/physiology , Nasal Septum/anatomy & histology , Animals , Bite Force , Chondrocytes/cytology , Compressive Strength/physiology , Finite Element Analysis , Nasal Septum/cytology , Nasal Septum/physiology , Tensile Strength/physiology
4.
Sci Rep ; 5: 17845, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26644235

ABSTRACT

Migraine animal models generally mimic the onset of attacks and acute treatment processes. A guinea pig model used the application of meta-chlorophenylpiperazine (mCPP) to trigger immediate dural plasma protein extravasation (PPE) mediated by 5-HT2B receptors. This model has predictive value for antimigraine drugs but cannot explain the delayed onset of efficacy of 5-HT2B receptor antagonists when clinically used for migraine prophylaxis. We found that mCPP failed to induce dural PPE in mice. Considering the role 5-HT2B receptors play in hypoxia-induced pulmonary vessel muscularization, we were encouraged to keep mice under hypoxic conditions and tested whether this treatment will render them susceptible to mCPP-induced dural PPE. Following four-week of hypoxia, PPE, associated with increased transendothelial transport, was induced by mCPP. The effect was blocked by sumatriptan. Chronic application of 5-HT2B receptor or nitric oxide synthase blockers during hypoxia prevented the development of susceptibility. Here we present a migraine model that distinguishes between a migraine-like state (hypoxic mice) and normal, normoxic mice and mimics processes that are related to chronic activation of 5-HT2B receptors under hypoxia. It seems striking, that chronic endogenous activation of 5-HT2B receptors is crucial for the sensitization since 5-HT2B receptor antagonists have strong, albeit delayed migraine prophylactic efficacy.


Subject(s)
Blood Proteins/metabolism , Dura Mater/metabolism , Hypoxia/metabolism , Migraine Disorders/etiology , Migraine Disorders/metabolism , Animals , Disease Models, Animal , Dura Mater/blood supply , Dura Mater/drug effects , Female , Guinea Pigs , Male , Mice , Nitric Oxide Synthase/metabolism , Piperazines/adverse effects , Receptor, Serotonin, 5-HT2B/metabolism , Transcytosis , Vascular Remodeling
5.
Acta Astronaut ; 50(12): 775-85, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12053942

ABSTRACT

The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.


Subject(s)
Aquaculture/methods , Ecological Systems, Closed , Life Support Systems/instrumentation , Space Flight/instrumentation , Weightlessness , Animals , Aquaculture/instrumentation , Behavior, Animal , Cyprinodontiformes , Eating , Equipment Design , Fishes , Food Supply , Humans , Magnoliopsida , Snails , Tilapia , Water Microbiology
6.
J Morphol ; 230(1): 55-67, 1996 Oct.
Article in English | MEDLINE | ID: mdl-29852655

ABSTRACT

Different molecular variants of gonadotropin-releasing hormone (GnRH) were localized in the brain and pituitary of Xiphophorus helleri, from neonates up to mature animals of both sexes. Nine GnRH antisera to salmon (s), mammalian (m), chicken I (c-I), and chicken II (c-II) GnRH were utilized. In the first week after birth GnRH immunoreactivity (IR) emerges with pale staining of the nucleus olfactoretinalis (NOR) in the ventral forebrain. The intensity of IR in the NOR increases during the next weeks and an IR tract of nerve fibers appears, protruding from the NOR in dorsocaudal direction. Adult animals exhibit additional GnRH-positive structures. Some perikarya of the nucleus preopticus periventricularis (NPP) are IR and positive fibers extend from the NPP toward the pituitary. In the pituitary IR fibers are also detectable. A distinctive structure in adult animals is an IR cord of neurons (CN) at the bottom of the forebrain which extends from the NPP to the olfactory nerve. A comparison of antisera against different GnRH species indicates that sGnRH is present in the NOR, whereas a different form of GnRH is present in the NPP, CN, and pituitary. The early onset of GnRH IR in the NOR and the widespread distribution of positive fibers from that nucleus into other brain regions suggest neuromodulatory functions of sGnRH from the NOR. The NPP possibly plays a major role in direct stimulation of pituitary gonadotropes via a different type of GnRH. © 1996 Wiley-Liss, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL
...