Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 25(7): 1603-6, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25746815

ABSTRACT

In the search for a new class of histone deacetylase inhibitors, we prepared a series of very simple benzofused hydroxamic acids to find an anchoring fragment of minimal molecular weight: they showed very good ligand efficiencies. Following these findings, classical fragment growing work was performed to increase binding energy and selective cytotoxicity. In the second phase of the work, information from the SARs of the benzothiophene series and data available in literature, we explored the in vitro pharmacological properties of the 6-substituted-7-fluoro-benzothiophene hydroxamates and the 5-susbtituted-benzofuran hydroxamates.


Subject(s)
Benzofurans/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Thiophenes/pharmacology , Benzofurans/chemical synthesis , Benzofurans/chemistry , Dose-Response Relationship, Drug , HCT116 Cells , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
2.
Bioorg Med Chem Lett ; 23(14): 4091-5, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23768910

ABSTRACT

In the search for a new class of histone deacetylase inhibitors, we prepared a series of simple benzofused hydroxamic acids to find an anchoring fragment of minimal molecular weight. These initial hits, all belonging to the benzothiophene class, showed very good ligand efficiencies. Following these findings, a classical fragment growing approach was performed to increase binding affinity and cytotoxicity.


Subject(s)
Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Hydroxamic Acids/chemistry , Thiophenes/chemistry , Cell Survival/drug effects , HCT116 Cells , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/toxicity , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/metabolism , Hydroxamic Acids/toxicity , Protein Binding
3.
Bioorg Med Chem ; 20(6): 2091-100, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22342268

ABSTRACT

A series of α,α-cycloalkylglycine sulfonamide compounds of general formula 1 has previously been identified by our group as selective human B(2)(hB(2)) receptor antagonists. Here we report the in vitro and in vivo BK antagonist activity of a further evolution of the series, consisting in compounds of the general formula 2, containing either an alkyl piperazine or a 4-alkyl piperidine ring bearing various positively charged groups (R'). These studies unexpectedly revealed quite a flat nanomolar/subnanomolar SAR for the binding affinity, while differences were seen in the in vitro functional activities. We propose that variations in the residence time may explain these results.


Subject(s)
Bradykinin B2 Receptor Antagonists , Glycine/analogs & derivatives , Glycine/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Animals , Bradykinin/metabolism , Bronchoconstriction/drug effects , CHO Cells , Cricetinae , Glycine/chemical synthesis , Guinea Pigs , Humans , Hypotension/drug therapy , Receptor, Bradykinin B2/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis
4.
Expert Opin Ther Pat ; 19(7): 919-41, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19552510

ABSTRACT

BACKGROUND: For > 20 years, pharmaceutical companies and academic centers have been developing bradykinin antagonists. The patent literature on these molecules (up to and including 2004) has been analyzed previously in this journal in two review articles. OBJECTIVE: The aim of this review is to provide an update (from 2005 to early 2009) on the patenting activity in the field of bradykinin antagonists (including patents on their formulation). Where possible, the information from the patents has been supplemented with that from the primary literature, clinical trial databases and company websites in an attempt to give a more complete picture. CONCLUSIONS: In the past 4 years, nearly 50 new patents have been filed on bradykinin antagonists--in the case of several filings, only the original source has been considered in this analysis--the vast majority of these (> 93%) on B1 antagonists. However, despite this large amount of work, only one compound, icatibant--a hydrophilic decapeptide selective for the B2 receptor--has reached the market, although it needs to be administered parenterally.


Subject(s)
Bradykinin B1 Receptor Antagonists , Bradykinin B2 Receptor Antagonists , Bradykinin/analogs & derivatives , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bradykinin/administration & dosage , Bradykinin/pharmacology , Clinical Trials as Topic , Drug Design , Humans , Patents as Topic
6.
J Med Chem ; 50(3): 550-65, 2007 Feb 08.
Article in English | MEDLINE | ID: mdl-17266207

ABSTRACT

Recently we reported on the design and synthesis of a novel class of selective nonpeptide bradykinin (BK) B2 receptor antagonists (J. Med. Chem. 2006, 3602-3613). This work led to the discovery of MEN 15442, an antagonist with subnanomolar affinity for the human B2 receptor (hB2R), which also displayed significant and prolonged activity in vivo (for up to 210 min) against BK-induced bronchoconstriction in the guinea-pig at a dose of 300 nmol/kg (it), while demonstrating only a slight effect on BK-induced hypotension. Here we describe the further optimization of this series of compounds aimed at maximizing the effect on bronchoconstriction and minimizing the effect on hypotension, with a view to developing topically delivered drugs for airway diseases. The work led to the discovery of MEN 16132, a compound which, after intratracheal or aerosol administration, inhibited, in a dose-dependent manner, BK-induced bronchoconstricton in the airways, while showing minimal systemic activity. This compound was selected as a preclinical candidate for the topical treatment of airway diseases involving kinin B2 receptor stimulation.


Subject(s)
Bradykinin B2 Receptor Antagonists , Bronchodilator Agents/chemical synthesis , Ornithine/analogs & derivatives , Sulfonamides/chemical synthesis , Animals , Blood Pressure/drug effects , Bronchoconstriction/drug effects , Bronchodilator Agents/chemistry , Bronchodilator Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Drug Design , Guinea Pigs , Humans , Ileum/drug effects , Ileum/physiology , In Vitro Techniques , Inositol Phosphates/biosynthesis , Male , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Ornithine/chemical synthesis , Ornithine/chemistry , Ornithine/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
7.
J Pept Sci ; 8(11): 601-14, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12487428

ABSTRACT

A new strategy for the synthesis of lipopeptides has been developed. Using Weinreb (N-methoxy, N-methyl) amide as an aldehyde function precursor on the side chains of Asp or Glu residues, this new strategy avoids the synthesis of a lipidic amino acid residue before its incorporation in the peptide sequence. The aldehyde generated on the solid support can react with ylides leading to unsaturated or saturated side chains or with various nucleophiles to yield non-coded amino acid residues incorporated into the sequence.


Subject(s)
Benzhydryl Compounds , Lipids/chemistry , Lipoproteins/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Chromatography, Thin Layer , Lipoproteins/chemistry , Protein Conformation , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...