Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 95(suppl 3): e20220591, 2023.
Article in English | MEDLINE | ID: mdl-37937657

ABSTRACT

This study investigated the spatial patterns of atmospheric circulation associated with surface air temperature variability trends between the Antarctic Peninsula and South America, during the austral summer (1979-2020). The first mode shows a positive score trend, with warming in northern Antarctic Peninsula and southern South America. This mode is mainly associated with the positive/neutral Southern Annular Mode and La Niña phases. There is an anomalous low pressure in the Southeast Pacific, a strengthening (weakening) of the polar (subtropical) jet and a strengthening and/or south/southwest displacement of the South Atlantic Subtropical High, which can prevent the passage of transient systems over the continent. In addition, there is a negative phase pattern of the South Atlantic Dipole, which contributes to the strengthening of the South Atlantic Convergence Zone convective activity. The second mode shows a negative score trend, with cooling in the Antarctic Peninsula/southernmost South America and warming between 10-40°S over South America. This mode is mainly associated with the spatial pattern of Central Pacific El Niño. There is a strengthening of the low-level jet and a strengthening of the western branch of the South Atlantic Subtropical High, all of which contribute to the suppression of the South Atlantic Convergence Zone.


Subject(s)
Cold Temperature , Temperature , Antarctic Regions , Seasons , South America
2.
Sci Rep ; 13(1): 1455, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36702914

ABSTRACT

The oceanic South Atlantic Convergence Zone (SACZ) has played a major role during South America's 2021/2022 summer extreme rainy season, being responsible for more than 90% of the precipitation in some regions of Southeast Brazil and in some regions of the Southwestern Atlantic Ocean (SWA). The summer of 2021/2022 was unique and rare and considered an abnormally humid season as verified by official Brazilian Institutes. First, the unusual number of cases of SACZ episodes (seven), was the highest recorded in the last decade. Second, all the cases that occurred were oceanic SACZ that assumed characteristics of an Atmospheric River and produced an excessively anomalous amount of precipitation during this period. Excess precipitation along with the regions located in mountainous and very uneven relief, which by orographic effects favors high precipitation volumes, were responsible for amplifying the observed impacts, such as landslides and floods that caused several losses to society. We also showed the main effects of coupling and interaction between the waters of the surface layer of the SWA and the atmosphere. Our learning from this study ends with the unprecedented results of how the marine atmospheric boundary layer (MABL) is locally modulated by the sea surface temperature (SST) that lies just below it. Until the present moment, we emphasize that this important mechanism has not been widely highlighted in the literature, showing that even though the ocean is colder than before oceanic SACZ is established, it is still warmer than the overlying air, thus, the ocean continues to be an active source of heat and moisture for the atmosphere and enhances the MABL instability process.

3.
An Acad Bras Cienc ; 94(suppl 1): e20210706, 2022.
Article in English | MEDLINE | ID: mdl-35648995

ABSTRACT

Global climate change is expected to increasingly affect climate-sensitive sectors of society, such as the economy and environment, with significant impacts on water, energy, agriculture and fisheries. This is the case in South America, whose economy is highly dependent on the agricultural sector. Here, we analyzed the sensitivity of South American climate to positive extremes of Antarctic sea ice (ASI) extent and volume at continental and regional scales. Sensitivity ensemble experiments were conducted with the GFDL-CM2.1 model and compared with the ERA-Interim reanalysis dataset. The results have shown significant impacts on the seasonal regime of precipitation, air temperature and humidity in South America, such as a gradual establishment of the South Atlantic Convergence Zone, the formation of the Upper Tropospheric Cyclonic Vortex, the strengthening of Bolivian High and the presence of a low level cyclonic circulation anomaly over the South Atlantic Subtropical High region which contributed, for instance, to increased precipitation over the Southeastern Brazil. A northward shift of the Intertropical Convergence Zone was initially also a response pattern to the increased ASI. Moreover, the greatest variance of the climatic signal generated from the disturbances applied on the high southern latitudes has occurred in the interseasonal timescale (110-120 days), especially over the Brazilian Amazon and the Southeastern Brazil regions.


Subject(s)
Climate Change , Ice Cover , Antarctic Regions , Brazil , Temperature
4.
An Acad Bras Cienc ; 94(suppl 1): e20210800, 2022.
Article in English | MEDLINE | ID: mdl-35442298

ABSTRACT

The formation of dense water masses at polar regions has been largely influenced by climate changes arising from global warming. In this context, based on ensemble simulations with a coupled model we evaluate the meridional shift of a climate signal (i.e., a cold and fresh water input pulse generated from melting of positive Antarctic sea ice (ASI) extremes) towards the Tropical Atlantic Ocean (TAO). This oceanic signal propagated from Southern Ocean towards the equator through the upper layers due to an increase in its buoyance. Its northward shift has given by the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) flows, that inject cold and fresh mode/intermediate waters from into subtropical basin. The signal has reached low latitudes through the equatorial upwelling and spreads out southwards, through the upper branch of southern subtropical gyre. We concluded that 10 years of coupled simulations was enough time to propagate the climate signal generated by ASI positive extremes melting, which reached TOA around 2 year later. The oceanic connection between Southern Ocean and TAO is indeed established within the timescale analyzed in the study (10 years). Nonetheless, the period needed to completely dissipate the disturbance generated from ASI seems to be longer.


Subject(s)
Fresh Water , Ice Cover , Antarctic Regions , Atlantic Ocean , Water
5.
An Acad Bras Cienc ; 94(suppl 1): e20210803, 2022.
Article in English | MEDLINE | ID: mdl-35416856

ABSTRACT

This paper aims to analyze the relationships among tropical (Atlantic Meridional Mode - AMM), subtropical (South Atlantic Subtropical Gradient - SASG), and extratropical (Southern Annular Mode - SAM) teleconnection patterns, the Weddell Sea (WS) sea ice extents, and the climate in South America. Warm anomalies are observed in most of South America for maximum WS ice extent combinations (negative SAM/positive AMM and negative SAM/positive SASG composites), with an opposite signal at tropical South America for minimum WS ice extent combinations (positive SAM/negative AMM and positive SAM/negative SASG). Over Southern Argentina, colder (warmer) temperatures are seen at the negative SAM/positive SASG (positive SAM/negative SASG). Drier (wetter) conditions are found over most South America at maximum (minimum) WS ice extent combinations. Wavetrains from different Pacific and Indian Oceans regions are related to high-level anomalous cyclonic (anticyclonic) circulation over the continent at maximum (minimum) WS ice extent configuration, which explains the climate impacts found. The SASG signal displaces the anomaly circulations eastward from South America, impacting the adjacent Atlantic Ocean region more intensely concerning the other modes. The results discussed here indicated that these patterns (SAM, AMM, SASG, and sea ice extent) have significant links with the South American climate variability.


Subject(s)
Climate , Ice Cover , Atlantic Ocean , South America , Temperature
6.
An Acad Bras Cienc ; 94(suppl 1): e20210795, 2022.
Article in English | MEDLINE | ID: mdl-35384977

ABSTRACT

The variability of Antarctic sea ice (ASI) has great potential to affect atmospheric circulation, with impacts that can extend from the surface to the middle and high levels of troposphere. The present study has evaluated the response of South Atlantic tropospheric circulation to increased coverage in area and volume of ASI. Monthly data of air temperature, zonal and meridional wind and mean sea level pressure were obtained from two ensemble simulations performed with the GDFL/CM2.1 model, covering the period from July 2020 to June 2030. In general, the response of South Atlantic tropospheric circulation to increased ASI showed that the climatic signal extended up from the surface to the high levels, propagating as a South Pole-Tropics teleconnection. The results show a general cooling of the southern troposphere, which for instance lead to the strengthening and northward shift of the polar jet and the southward shift of the subtropical jet and to an inversion from the positive to negative phase of the Southern Annular Mode. This study has great relevance for understanding the global climate changes in short term, by assessing the sensitivity of South Atlantic tropospheric circulation to extreme variations in ASI.


Subject(s)
Ice Cover , Wind , Antarctic Regions , Climate Change , Temperature
8.
Sci Rep ; 11(1): 10648, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34017014

ABSTRACT

Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean-atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2 source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m-2 day-1, averaged over the sampling period. The CO2 transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean-atmosphere fluxes. The ocean-atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean-atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...