Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 173: 113635, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36717016

ABSTRACT

Regulators have established safety requirements for food packaging raw materials and finished products, including by-products of polymer synthesis known as non-intentionally added substances (NIAS). However, there are no official guidance or regulations for best practices to evaluate the safety of NIAS. Here we described the process we followed to identify, characterize, and prioritize for safety assessment low molecular weight NIAS from an epoxy coating (V70) made with tetramethyl bisphenol F-based diglycidyl ether resin (TMBPF-DGE). We assembled a database of 15000 potential oligomers with masses up to 1000 Da and conducted extraction and migration testing of V70 coating. Acetonitrile extract contained higher number and concentration of substances compared to ethanolic-based food simulants. The extract contained 16 substances with matches in the database with estimated concentration of 18.27 µg/6 dm2; seven of these substances have potentially genotoxic oxirane functionality. TMBPF-DGE + hydroquinone (TMBPF-DGE + HQ) was most abundant (55% of total concentration) and was synthesized and prioritized for safety assessment. TMBPF-DGE + HQ exposure from can beverage was estimated at 5.2 µg/person/day, and it was not mutagenic or genotoxic in in vitro assays. The overall mixture of substances that migrated into ethanolic simulant was also negative in the mutagenicity bioassay. Our findings suggest that exposure to TMBPF-DGE + HQ from the V70 coating is exceedingly small and that the coating migrates are not genotoxic.


Subject(s)
Food Packaging , Polymers , Humans , Polymers/toxicity , Food , Chromatography, Gas , Mutagens/analysis , Allergens/analysis , Food Contamination/analysis
2.
NanoImpact ; 172020 Jan.
Article in English | MEDLINE | ID: mdl-32968699

ABSTRACT

Cellulose nanofibers (CNFs) are an emerging engineered nanomaterial that are utilized in a variety of applications, including as a replacement for urea-formaldehyde, and other adhesives, as the binding agent in manufactured fiber and particle boards. To ensure the health and well-being of those producing, installing, or otherwise using cellulose nanofiber boards (CNFBs) it is imperative that the particulate matter (PM) produced during CNFB manipulation be evaluated for toxicity. We developed and internally verified a generation system to examine the PM produced by sanding CNFB using aluminum oxide sandpaper. With 80-grit sandpaper our system produced a low dispersity aerosol, as determined by a scanning mobility particle sizer and an optical particle counter, with a geometric mean of 28 nm (GSD = 1.60). ICP-MS evaluation showed little difference in metal concentrations between CNFB PM and nonsanded CNFB stock. We then used the system to simultaneously generate and expose both male and female C57BL/6J mice acutely for 4 hours at a concentration of 7.9 mg/m3. Sham-exposed controls were treated similarly but without sanding the CNFB. Analysis of bronchoalveolar lavage (BAL) fluid biomarkers showed no signs of inflammatory response at either 4- or 24-hours post exposure. Further, BAL cell viability, number of total cells, and pulmonary cellular recruitment were not significantly changed between the sham-exposed controls and CNFB-exposed mice. Histology further confirmed no pulmonary toxicity as a result of CNFB PM inhalation. We conclude that inhalation of a high concentration of the PM from manipulation of a CNFB did not produce acute toxic responses within 24 hours of exposure.

3.
NanoImpact ; 182020 Apr.
Article in English | MEDLINE | ID: mdl-32968700

ABSTRACT

Characterizations and in vitro toxicity screening were performed on metal oxide engineered nanomaterials (ENMs) independently comprising ZnO, CuO, CeO2, Fe2O3, WO3, V2O5, TiO2, Al2O3 and MgO. Nanomaterials that exhibited the highest toxicity responses in the in vitro screening assays (ZnO, CuO, and V2O5) and the lesser explored material WO3 were tested for acute pulmonary toxicity in vivo. Female and male mice (C57Bl/6J) were exposed to aerosolized metal oxide ENMs in a nose-only exposure system and toxicity outcomes (biomarkers of cytotoxicity, immunotoxicity, inflammation, and lung histopathology) at 4 and 24 h after the start of exposure were assessed. The studies were performed as part of the NIEHS Nanomaterials Health Implications Research consortium with the purpose of investigating the effects of ENMs on various biological systems. ENMs were supplied by the Engineered Nanomaterials Resource and Coordination Core. Among the ENMs studied, the highest toxicity was observed for CuO and ZnO NPs in both in vitro and in vivo acute models. Compared to sham-exposed controls, there was a significant increase in bronchoalveolar lavage neutrophils and proinflammatory cytokines and a loss of macrophage viability at both 4 h and 24 h for ZnO and CuO but not seen for V2O5 or WO3. These effects were observed in both female and male mice. The cell viability performed after in vitro exposure to ENMs and assessment of lung inflammation after acute inhalation exposure in vivo were shown to be sensitive endpoints to predict ENM acute toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...