Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nature ; 628(8008): 604-611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538784

ABSTRACT

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Subject(s)
Calcitonin Gene-Related Peptide , Macrophages , Neutrophils , Nociceptors , Wound Healing , Animals , Mice , Autocrine Communication , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Efferocytosis , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , Muscle, Skeletal , NAV1.8 Voltage-Gated Sodium Channel/deficiency , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Nociceptors/metabolism , Paracrine Communication , Peripheral Nervous System Diseases/complications , Receptor Activity-Modifying Protein 1/metabolism , Regeneration/drug effects , Skin , Thrombospondin 1/metabolism , Wound Healing/drug effects , Wound Healing/immunology , Humans , Male , Female
2.
J Am Coll Surg ; 238(4): 436-447, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38214445

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting the B-cell antigen CD19 are standard therapy for relapsed or refractory B-cell lymphoma and leukemia. CAR T cell therapy in solid tumors is limited due to an immunosuppressive tumor microenvironment and a lack of tumor-restricted antigens. We recently engineered an oncolytic virus (CF33) with high solid tumor affinity and specificity to deliver a nonsignaling truncated CD19 antigen (CD19t), allowing targeting by CD19-CAR T cells. Here, we tested this combination against pancreatic cancer. STUDY DESIGN: We engineered CF33 to express a CD19t (CF33-CD19t) target. Flow cytometry and ELISA were performed to quantify CD19t expression, immune activation, and killing by virus and CD19-CAR T cells against various pancreatic tumor cells. Subcutaneous pancreatic human xenograft tumor models were treated with virus, CAR T cells, or virus+CAR T cells. RESULTS: In vitro, CF33-CD19t infection of tumor cells resulted in >90% CD19t cell-surface expression. Coculturing CD19-CAR T cells with infected cells resulted in interleukin-2 and interferon gamma secretion, upregulation of T-cell activation markers, and synergistic cell killing. Combination therapy of virus+CAR T cells caused significant tumor regression (day 13): control (n = 16, 485 ± 20 mm 3 ), virus alone (n = 20, 254 ± 23 mm 3 , p = 0.0001), CAR T cells alone (n = 18, 466 ± 25 mm 3 , p = NS), and virus+CAR T cells (n = 16, 128 ± 14 mm 3 , p < 0.0001 vs control; p = 0.0003 vs virus). CONCLUSIONS: Engineered CF33-CD19t effectively infects and expresses CD19t in pancreatic tumors, triggering cell killing and increased immunogenic response by CD19-CAR T cells. Notably, CF33-CD19t can turn cold immunologic tumors hot, enabling solid tumors to be targetable by agents designed against liquid tumor antigens.


Subject(s)
Oncolytic Viruses , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Oncolytic Viruses/genetics , Oncolytic Viruses/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Antigens, CD19/metabolism , Pancreatic Neoplasms/therapy , Tumor Microenvironment
3.
Cancers (Basel) ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067366

ABSTRACT

Precision immune oncology capitalizes on identifying and targeting tumor-specific antigens to enhance anti-tumor immunity and improve the treatment outcomes of solid tumors. Gastric cancer (GC) is a molecularly heterogeneous disease where monoclonal antibodies against human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), and programmed cell death 1 (PD-1) combined with systemic chemotherapy have improved survival in patients with unresectable or metastatic GC. However, intratumoral molecular heterogeneity, variable molecular target expression, and loss of target expression have limited antibody use and the durability of response. Often immunogenically "cold" and diffusely spread throughout the peritoneum, GC peritoneal carcinomatosis (PC) is a particularly challenging, treatment-refractory entity for current systemic strategies. More adaptable immunotherapeutic approaches, such as oncolytic viruses (OVs) and chimeric antigen receptor (CAR) T cells, have emerged as promising GC and GCPC treatments that circumvent these challenges. In this study, we provide an up-to-date review of the pre-clinical and clinical efficacy of CAR T cell therapy for key primary antigen targets and provide a translational overview of the types, modifications, and mechanisms for OVs used against GC and GCPC. Finally, we present a novel, summary-based discussion on the potential synergistic interplay between OVs and CAR T cells to treat GCPC.

4.
Am J Manag Care ; 29(11): 566-572, 2023 11.
Article in English | MEDLINE | ID: mdl-37948643

ABSTRACT

OBJECTIVES: To estimate excess health care costs in the 12 months following COVID-19 diagnosis. STUDY DESIGN: Retrospective cohort study using Blue Cross Blue Shield of Rhode Island claims incurred from January 1, 2019, to March 31, 2022, among commercial and Medicare Advantage members. METHODS: Difference-in-differences analyses were used to compare changes in health care spend between the 12 months before (baseline period) and the 12 months after (post period) COVID-19 diagnosis for COVID-19 cases and contemporaneous matched controls without COVID-19. RESULTS: Overall, there were 7224 commercial and 1630 Medicare Advantage members with a COVID-19 diagnosis on/before March 31, 2021, each with a matched control, yielding a sample of 14,448 commercial and 3260 Medicare Advantage members. Among commercial members, 51.9% were aged 25 to 54 years and 54.0% were female. Among Medicare Advantage members, 94.2% were 65 years or older and 62.0% were female. Among commercial members, from the baseline period to the post period, total health care spend increased $41.61 (7.7%) per member per month (PMPM) more among COVID-19 cases compared with their matched controls. Among Medicare Advantage members, the difference-in-differences was greater, with spend increasing $97.30 (13.1%) PMPM more among cases compared with controls. The difference-in-differences was greatest for outpatient and professional services (both populations) and prescription services (Medicare Advantage only). CONCLUSIONS: COVID-19 diagnosis was associated with excess health care spend PMPM over the subsequent 12 months, highlighting the importance of societal preparations to support individuals' long-term health care needs following COVID-19 and as a part of future pandemic preparedness.


Subject(s)
COVID-19 Testing , COVID-19 , United States/epidemiology , Aged , Female , Humans , Male , Pandemics , Retrospective Studies , COVID-19/epidemiology , Medicare , Health Care Costs
5.
Mol Ther Oncolytics ; 31: 100734, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37915757

ABSTRACT

Gastric cancer (GC) peritoneal metastasis (PM) is fatal without effective therapy. We investigated CF17, a new replication-competent chimeric poxvirus, against GC cell lines in vitro and PM in an aggressive GCPM mouse model. We performed viral proliferation and cytotoxicity assays on intestinal-type and diffuse-type human GC cell lines following CF17 treatment. At lower MOIs of 0.01, 0.1, there was >80% killing in most cell lines, while in the more aggressive cell lines, killing was seen at higher MOIs of 1.0 and 10.0. We observed reduced peritoneal tumor burden and prolonged survival with intraperitoneal (i.p.) CF17 treatment in nude mice implanted with the resistant GC cell line. At day 91 after treatment, seven of eight mice were alive in the CF17-treated group vs. one of eight mice in the control group. CF17 treatment inhibited ascites formation (0% vs. 62.5% with PBS). Thus, CF17 efficiently infected, replicated in, and killed GC cells in a dose- and time-dependent manner in vitro. In vivo, i.p. CF17 treatment exhibited robust antitumor activity against an aggressive GCPM model to decrease tumor burden, improve survival, and prevent ascites formation. These preclinical results inform the design of future clinical trials of CF17 for peritoneal-directed therapy in GCPM patients.

6.
Int J Mol Sci ; 24(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37762490

ABSTRACT

We studied the immunotherapeutic potential of CF33-hNIS-antiPDL1 oncolytic virus (OV) against gastric cancer with peritoneal metastasis (GCPM). We collected fresh malignant ascites (MA) or peritoneal washings (PW) during routine paracenteses and diagnostic laparoscopies from GC patients (n = 27). Cells were analyzed for cancer cell markers and T cells, or treated with PBS, CF33-GFP, or CF33-hNIS-antiPDL1 (MOI = 3). We analyzed infectivity, replication, cytotoxicity, CD107α upregulation of CD8+ and CD4+ T cells, CD274 (PD-L1) blockade of cancer cells by virus-encoded anti-PD-L1 scFv, and the release of growth factors and cytokines. We observed higher CD45-/large-size cells and lower CD8+ T cell percentages in MA than PW. CD45-/large-size cells were morphologically malignant and expressed CD274 (PD-L1), CD252 (OX40L), and EGFR. CD4+ and CD8+ T cells did not express cell surface exhaustion markers. Virus infection and replication increased cancer cell death at 15 h and 48 h. CF33-hNIS-antiPDL1 treatment produced functional anti-PD-L1 scFv, which blocked surface PD-L1 binding of live cancer cells and increased CD8+CD107α+ and CD4+CD107α+ T cell percentages while decreasing EGF, PDGF, soluble anti-PD-L1, and IL-10. CF33-OVs infect, replicate in, express functional proteins, and kill ex vivo GCPM cells with immune-activating effects. CF33-hNIS-antiPDL1 displays real potential for intraperitoneal GCPM therapy.

7.
Nat Commun ; 14(1): 4737, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550294

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumors. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies. Here, we describe CAR T cells targeting tumor-associated glycoprotein-72 (TAG72), utilizing the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. CAR T cell-mediated IFNγ production facilitated by IL-12 signaling is required for tumor cell killing, which is recapitulated by engineering an optimized membrane-bound IL-12 (mbIL12) molecule in CAR T cells. These T cells show improved antigen-dependent T cell proliferation and recursive tumor cell killing in vitro, with robust in vivo efficacy in human ovarian cancer xenograft models. Locoregional administration of mbIL12-engineered CAR T cells promotes durable anti-tumor responses against both regional and systemic disease in mice. Safety and efficacy of mbIL12-engineered CAR T cells is demonstrated using an immunocompetent mouse model, with beneficial effects on the immunosuppressive tumor microenvironment. Collectively, our study features a clinically-applicable strategy to improve the efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting regional and systemic disease.


Subject(s)
Ovarian Neoplasms , Receptors, Chimeric Antigen , Female , Humans , Mice , Animals , Immunotherapy, Adoptive , Interleukin-12 , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Ovarian Neoplasms/therapy , Xenograft Model Antitumor Assays , Cell Line, Tumor , Tumor Microenvironment
8.
J Immunother Cancer ; 11(4)2023 04.
Article in English | MEDLINE | ID: mdl-37019471

ABSTRACT

BACKGROUND: Gastric cancer (GC) that metastasizes to the peritoneum is fatal. CF33 and its genetically modified derivatives show cancer selectivity and oncolytic potency against various solid tumors. CF33-hNIS and CF33-hNIS-antiPDL1 have entered phase I trials for intratumoral and intravenous treatments of unresectable solid tumors (NCT05346484) and triple-negative breast cancer (NCT05081492). Here, we investigated the antitumor activity of CF33-oncolytic viruses (OVs) against GC and CF33-hNIS-antiPDL1 in the intraperitoneal (IP) treatment of GC peritoneal metastases (GCPM). METHODS: We infected six human GC cell lines AGS, MKN-45, MKN-74, KATO III, SNU-1, and SNU-16 with CF33, CF33-GFP, or CF33-hNIS-antiPDL1 at various multiplicities of infection (0.01, 0.1, 1.0, and 10.0), and performed viral proliferation and cytotoxicity assays. We used immunofluorescence imaging and flow cytometric analysis to verify virus-encoded gene expression. We evaluated the antitumor activity of CF33-hNIS-antiPDL1 following IP treatment (3×105 pfu × 3 doses) in an SNU-16 human tumor xenograft model using non-invasive bioluminescence imaging. RESULTS: CF33-OVs showed dose-dependent infection, replication, and killing of both diffuse and intestinal subtypes of human GC cell lines. Immunofluorescence imaging showed virus-encoded GFP, hNIS, and anti-PD-L1 antibody scFv expression in CF33-OV-infected GC cells. We confirmed GC cell surface PD-L1 blockade by virus-encoded anti-PD-L1 scFv using flow cytometry. In the xenograft model, CF33-hNIS-antiPDL1 (IP; 3×105 pfu × 3 doses) treatment significantly reduced peritoneal tumors (p<0.0001), decreased amount of ascites (62.5% PBS vs 25% CF33-hNIS-antiPDL1) and prolonged animal survival. At day 91, seven out of eight mice were alive in the virus-treated group versus one out of eight in the control group (p<0.01). CONCLUSIONS: Our results show that CF33-OVs can deliver functional proteins and demonstrate effective antitumor activity in GCPM models when delivered intraperitoneally. These preclinical results will inform the design of future peritoneal-directed therapy in GCPM patients.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Peritoneal Neoplasms , Stomach Neoplasms , Humans , Mice , Animals , Oncolytic Viruses/genetics , Peritoneal Neoplasms/therapy , Oncolytic Virotherapy/methods , Peritoneum/pathology , Stomach Neoplasms/pathology
9.
bioRxiv ; 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36711615

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapeutic responses are hampered by limited T cell trafficking, persistence, and durable anti-tumor activity in solid tumor microenvironments. However, these challenges can be largely overcome by relatively unconstrained synthetic engineering strategies, which are being harnessed to improve solid tumor CAR T cell therapies. Here, we describe fully optimized CAR T cells targeting tumor-associated glycoprotein-72 (TAG72) for the treatment of solid tumors, identifying the CD28 transmembrane domain upstream of the 4-1BB co-stimulatory domain as a driver of potent anti-tumor activity and IFNγ secretion. These findings have culminated into a phase 1 trial evaluating safety, feasibility, and bioactivity of TAG72-CAR T cells for the treatment of patients with advanced ovarian cancer ( NCT05225363 ). Preclinically, we found that CAR T cell-mediated IFNγ production facilitated by IL-12 signaling was required for tumor cell killing, which was recapitulated by expressing an optimized membrane-bound IL-12 (mbIL12) molecule on CAR T cells. Critically, mbIL12 cell surface expression and downstream signaling was induced and sustained only following CAR T cell activation. CAR T cells with mbIL12 demonstrated improved antigen-dependent T cell proliferation and potent cytotoxicity in recursive tumor cell killing assays in vitro and showed robust in vivo anti-tumor efficacy in human xenograft models of ovarian cancer peritoneal metastasis. Further, locoregional administration of TAG72-CAR T cells with antigen-dependent IL-12 signaling promoted durable anti-tumor responses against both regional and systemic disease in mice and was associated with improved systemic T cell persistence. Our study features a clinically-applicable strategy to improve the overall efficacy of locoregionally-delivered CAR T cells engineered with antigen-dependent immune-modulating cytokines in targeting both regional and systemic disease.

10.
Mol Ther Oncolytics ; 24: 864-872, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35317522

ABSTRACT

Pancreatic cancer resistance to immunotherapies is partly due to deficits in tumor-infiltrating immune cells and stromal density. Combination therapies that modify stroma and recruit immune cells are needed. Vitamin D analogs such as calcipotriol (Cal) decrease fibrosis in pancreas stroma, thus allowing increased chemotherapy delivery. OVs infect, replicate in, and kill cancer cells and recruit immune cells to immunodeficient microenvironments. We investigated whether stromal modification with Cal would enhance oncolytic viroimmunotherapy using recombinant orthopoxvirus, CF33. We assessed effect of Cal on CF33 replication using pancreas ductal adenocarcinoma (PDAC) cell lines and in vivo flank orthotopic models. Proliferation assays showed that Cal did not alter viral replication. Less replication was seen in cell lines whose division was slowed by Cal, but this appeared proportional to cell proliferation. Three-dimensional in vitro models demonstrated decreased myofibroblast integrity after Cal treatment. Cal increased vascular lumen size and immune cell infiltration in subcutaneous models of PDAC and increased viral delivery and replication. Cal plus serial OV dosing in the syngeneic Pan02 model caused more significant tumor abrogation than other treatments. Cal-treated tumors had less dense fibrosis, enhanced immune cell infiltration, and decreased T cell exhaustion. Calcipotriol is a possible adjunct for CF33-based oncolytic viroimmunotherapy against PDAC.

11.
Mol Ther Oncolytics ; 24: 331-339, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35118191

ABSTRACT

Peritoneal carcinomatosis of gastrointestinal malignancies remains fatal. CF33-hNIS-antiPDL1, a chimeric orthopoxvirus expressing the human sodium iodide symporter (hNIS) and anti-human programmed death-ligand 1 antibody, has demonstrated robust preclinical activity against pancreatic adenocarcinoma (PDAC). We investigated the ability of CF33-hNIS-antiPDL1 to infect, help detect, and kill peritoneal tumors following intratumoral (i.t.) injection of subcutaneous (s.c.) tumors in vivo. Human PDAC AsPC-1-ffluc cells were inoculated in both the s.c. space and the peritoneal cavity of athymic mice. After successful tumor engraftment, s.c. tumors were injected with CF33-hNIS-antiPDL1 or PBS. We assessed the ability of CF33-hNIS-antiPDL1 to infect, replicate in, and allow the imaging of tumors at both sites (immunohistochemistry [IHC] and 124I-based positron emission tomography/computed tomography [PET/CT] imaging), tumor burden (bioluminescence imaging), and animal survival. IHC staining for hNIS confirmed expression in s.c. and peritoneal tumors following virus treatment. Compared to the controls, CF33-hNIS-antiPDL1-treated mice showed significantly decreased s.c. and peritoneal tumor burden and improved survival (p < 0.05). Notably, 2 of 8 mice showed complete regression of disease. PET/CT avidity for 124I uptake in s.c. and peritoneal tumors was visible starting at day 7 following the first i.t. dose of CF33-hNIS-antiPDL1. We show that CF33-hNIS-antiPDL1 can help detect and kill both s.c. and peritoneal tumors following s.c. i.t. treatment.

12.
Cancer Gene Ther ; 29(6): 722-733, 2022 06.
Article in English | MEDLINE | ID: mdl-34108669

ABSTRACT

Immunotherapeutic strategies that combine oncolytic virus (OV) and immune checkpoint inhibitors have the potential to overcome treatment resistance in pancreatic ductal adenocarcinoma (PDAC), one of the least immunogenic solid tumors. Oncolytic viral chimera, CF33-hNIS-antiPDL1 genetically modified to express anti-human PD-L1 antibody and CF33-hNIS-Δ without the anti-PD-L1 gene, were used to investigate the immunogenic effects of OVs and virus-delivered anti-PD-L1 in PDAC in vitro. Western blot, flow cytometry, and immunofluorescence microscopy were used to evaluate the effects of CF33-hNIS-Δ and IFNγ on PD-L1 upregulation in AsPC-1 and BxPC-3 cells, and CF33-hNIS-antiPDL1 production of anti-PD-L1 and surface PD-L1 blockade of AsPC-1 and BxPC-3 with or without cocultured activated T cells. The cytosolic and cell surface levels of PD-L1 in PDAC cell lines varied; only BxPC-3 showed high cell surface expression. Treatment of these cells with CF33-hNIS-Δ and IFNγ significantly upregulated PD-L1 expression and translocation of PD-L1 from the cytosol onto the cell surface. Following coculture of activated T cells and BxPC-3 with CF33-hNIS-antiPDL1, the cell surface PD-L1 blockade on BxPC-3 cells by virus-delivered anti-PD-L1 antibody increased granzyme B release and prevented virus-induced decrease of perforin release from activated CD8+ T cells. Our results suggest that CF33-IOVs can prime immune checkpoint inhibition of PDAC and enhance antitumor immune killing.


Subject(s)
Carcinoma, Pancreatic Ductal , Oncolytic Viruses , Pancreatic Neoplasms , B7-H1 Antigen , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , Humans , Oncolytic Viruses/genetics , Oncolytic Viruses/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
13.
Mol Ther Oncolytics ; 23: 303-310, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34786474

ABSTRACT

Oncolytic viruses infect, replicate in, and kill cancer cells, leaving normal cells unharmed; they also recruit and activate immune cells against tumor cells. While clinical indications for viroimmunotherapy are growing, barriers to widespread treatment remain. Ensuring real-time tracking of viral replication and resulting anti-tumor immune responses will overcome some of these barriers and is thus a top priority. Clinically optimizing trackability of viral replication will promote safe dose increases, guide serial dosing, and enhance treatment effects. However, viral delivery is only half the story. Oncolytic viruses are known to upregulate immune checkpoint expression, thereby priming otherwise immunodeficient tumor immune microenvironments for treatment with checkpoint inhibitors. Novel modalities to track virus-induced changes in tumor microenvironments include non-invasive measurements of immune cell populations and responses to viroimmunotherapy such as (1) in situ use of radiotracers to track checkpoint protein expression or immune cell traffic, and (2) ex vivo labeling of immune cells followed by nuclear medicine imaging. Herein, we review clinical progress toward accurate imaging of oncolytic virus replication, and we further review the current status of functional imaging of immune responses to viroimmunotherapy.

14.
Cell Rep ; 36(5): 109495, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34348148

ABSTRACT

Scn2a encodes the voltage-gated sodium channel NaV1.2, a main mediator of neuronal action potential firing. The current paradigm suggests that NaV1.2 gain-of-function variants enhance neuronal excitability, resulting in epilepsy, whereas NaV1.2 deficiency impairs neuronal excitability, contributing to autism. However, this paradigm does not explain why ∼20%-30% of individuals with NaV1.2 deficiency still develop seizures. Here, we report the counterintuitive finding that severe NaV1.2 deficiency results in increased neuronal excitability. Using a NaV1.2-deficient mouse model, we show enhanced intrinsic excitability of principal neurons in the prefrontal cortex and striatum, brain regions known to be involved in Scn2a-related seizures. This increased excitability is autonomous and reversible by genetic restoration of Scn2a expression in adult mice. RNA sequencing reveals downregulation of multiple potassium channels, including KV1.1. Correspondingly, KV channel openers alleviate the hyperexcitability of NaV1.2-deficient neurons. This unexpected neuronal hyperexcitability may serve as a cellular basis underlying NaV1.2 deficiency-related seizures.


Subject(s)
Aging/physiology , NAV1.2 Voltage-Gated Sodium Channel/deficiency , Neurons/physiology , Action Potentials , Animals , Down-Regulation , Ion Channel Gating , Mice, Inbred C57BL , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Potassium Channels/metabolism
15.
Mol Ther ; 29(7): 2335-2349, 2021 07 07.
Article in English | MEDLINE | ID: mdl-33647456

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has led to impressive clinical responses in patients with hematological malignancies; however, its effectiveness in patients with solid tumors has been limited. While CAR T cells for the treatment of advanced prostate and pancreas cancer, including those targeting prostate stem cell antigen (PSCA), are being clinically evaluated and are anticipated to show bioactivity, their safety and the impact of the immunosuppressive tumor microenvironment (TME) have not been faithfully explored preclinically. Using a novel human PSCA knockin (hPSCA-KI) immunocompetent mouse model, we evaluated the safety and therapeutic efficacy of PSCA-CAR T cells. We demonstrated that cyclophosphamide (Cy) pre-conditioning significantly modified the immunosuppressive TME and was required to uncover the efficacy of PSCA-CAR T cells in metastatic prostate and pancreas cancer models, with no observed toxicities in normal tissues with endogenous expression of PSCA. This combination dampened the immunosuppressive TME, generated pro-inflammatory myeloid and T cell signatures in tumors, and enhanced the recruitment of antigen-presenting cells, as well as endogenous and adoptively transferred T cells, resulting in long-term anti-tumor immunity.


Subject(s)
Cyclophosphamide/pharmacology , Immunotherapy, Adoptive/methods , Neoplasm Proteins/antagonists & inhibitors , Pancreatic Neoplasms/therapy , Prostatic Neoplasms/therapy , Tumor Microenvironment , Animals , Antigens, Neoplasm/genetics , Apoptosis , Cell Proliferation , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Myeloablative Agonists/pharmacology , Neoplasm Proteins/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Genes Brain Behav ; 20(4): e12725, 2021 04.
Article in English | MEDLINE | ID: mdl-33369088

ABSTRACT

Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav 1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/- ) results in mild behavior abnormalities. The Nav 1.2 expression level in Scn2a+/- mice is reported to be around 50-60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav 1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO ) that can survive to adulthood, with about a quarter of Nav 1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.


Subject(s)
Mutation/genetics , NAV1.2 Voltage-Gated Sodium Channel/genetics , Voltage-Gated Sodium Channels/genetics , Animals , Disease Models, Animal , Humans , Mice, Knockout , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype
17.
Mol Cancer Ther ; 20(1): 173-182, 2021 01.
Article in English | MEDLINE | ID: mdl-33262221

ABSTRACT

Although it is known that oncolytic viruses can inflame and recruit immune cells to otherwise immunosuppressed tumor microenvironments, the influence of the antiviral immune response on antitumor immunity is less clear across viral platforms and tumor types. CF33 is a recombinant orthopoxvirus backbone effective against colon cancer. We tested derivatives of CF33 with and without immune-checkpoint inhibition (anti-PD-L1) in mouse models of colon cancer. Results showed that the efficacy of CF33 backbone with J2R deletion (single-deleted) against colon cancer is not altered by additional deletion of F14.5L in vitro or in vivo CF33 infection upregulated PD-L1 expression on tumor cells and led to an increased influx of lymphocytes and macrophages in tumors. Also, the levels of active CD8+ (IFNγ+) T cells in the virus-treated tumors were higher than those in control-treated tumors. Furthermore, a combination of CF33 derivatives with anti-PD-L1 resulted in durable tumor regression and long-term survival, resistant to tumor rechallenge. Analysis of immune cells from the treated mice showed that tumor-specific T cell activation occurred more robustly in tumors treated with the virus and that T cells were more strongly activated against the virus than against tumor, in an MHC-I-dependent manner. Our findings warrant further studies on the role of cross-priming of T cells against viral and tumor antigens, in the overall success of viroimmunotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/immunology , Colonic Neoplasms/virology , Cross-Priming/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immunity , Orthopoxvirus/immunology , T-Lymphocytes/immunology , Animals , Cell Line , Colonic Neoplasms/drug therapy , Cross-Priming/drug effects , Histocompatibility Antigens Class I/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunologic Memory/drug effects , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Programmed Cell Death 1 Receptor/metabolism , Recombination, Genetic/genetics , T-Lymphocytes/drug effects , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
18.
Int J Mol Sci ; 21(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33023064

ABSTRACT

Oncolytic viroimmunotherapy is an exciting modality that can offer lasting anti-tumor immunity for aggressive malignancies like colon cancer. The impact of oncolytic viruses may be extended by combining them with agents to prime a tumor for viral susceptibility. This study investigates vitamin D analogue as an adjunct to oncolytic viral therapy for colon cancer. While vitamin D (VD) has historically been viewed as anti-viral, our in vitro investigations using human colon cancer cell lines showed that VD does not directly inhibit replication of recombinant chimeric poxvirus CF33. VD did restrict growth in HT29 but not HCT116 human colon cancer cells. In vivo investigations using HCT116 and HT29 xenograft models of colon cancer demonstrated that a VD analogue, calcipotriol, was additive with CF33-based viral therapy in VD-responsive HT29 but not in HCT116 tumors. Analyses of RNA-sequencing and gene expression data demonstrated a downregulation in the Jak-STAT signaling pathway with the addition of VD to viral therapy in HT29 models suggesting that the anti-inflammatory properties of VD may enhance the effects of viral therapy in some models. In conclusion, VD may prime oncolytic viral therapy in certain colon cancers.


Subject(s)
Colonic Neoplasms/therapy , Oncolytic Virotherapy , Virus Replication/drug effects , Vitamin D/pharmacology , Animals , Base Sequence/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/virology , Combined Modality Therapy , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , HT29 Cells , Humans , Immunotherapy/methods , Mice , Oncolytic Viruses/genetics , Vitamin D/genetics , Xenograft Model Antitumor Assays
19.
Sci Transl Med ; 12(559)2020 09 02.
Article in English | MEDLINE | ID: mdl-32878978

ABSTRACT

Chimeric antigen receptor (CAR)-engineered T cell therapy for solid tumors is limited by the lack of both tumor-restricted and homogeneously expressed tumor antigens. Therefore, we engineered an oncolytic virus to express a nonsignaling, truncated CD19 (CD19t) protein for tumor-selective delivery, enabling targeting by CD19-CAR T cells. Infecting tumor cells with an oncolytic vaccinia virus coding for CD19t (OV19t) produced de novo CD19 at the cell surface before virus-mediated tumor lysis. Cocultured CD19-CAR T cells secreted cytokines and exhibited potent cytolytic activity against infected tumors. Using several mouse tumor models, delivery of OV19t promoted tumor control after CD19-CAR T cell administration. OV19t induced local immunity characterized by tumor infiltration of endogenous and adoptively transferred T cells. CAR T cell-mediated tumor killing also induced release of virus from dying tumor cells, which propagated tumor expression of CD19t. Our study features a combination immunotherapy approach using oncolytic viruses to promote de novo CAR T cell targeting of solid tumors.


Subject(s)
Neoplasms , Oncolytic Viruses , Animals , Antigens, CD19 , Immunotherapy , Immunotherapy, Adoptive , Mice , Neoplasms/therapy , Receptors, Antigen, T-Cell
20.
Sci Adv ; 6(24): eaba7602, 2020 06.
Article in English | MEDLINE | ID: mdl-32582857

ABSTRACT

Although growth factors (GFs) are key molecules for regenerative medicine, their use has been limited by issues associated with suboptimal delivery systems and incomplete understanding of their signaling dynamics. Here, we explored how proinflammatory signals affect GF regenerative potential. Using bone regeneration in mouse, we found that the regenerative capacity of two clinically relevant GFs (BMP-2 and PDGF-BB) is impaired by interleukin-1 receptor (IL-1R1). Mechanistically, IL-1R1 activation in bone-forming cells desensitizes them to GFs and accelerates senescence. Moreover, administration of the GFs triggers IL-1 release by macrophages. To provide localized and sustained IL-1R1 inhibition, we engineered IL-1R antagonist (IL-1Ra) to bind the extracellular matrix (ECM) very strongly and demonstrate that codelivering GFs with ECM-binding IL-1Ra induces superior regeneration. Thus, we highlight that GF regenerative activity is hindered by proinflammatory signals, and GF-based therapies should integrate immunomodulation. Particularly, ECM-binding IL-1Ra holds clinical translational potential by enhancing efficacy of GF therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...