Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 628(8008): 604-611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538784

ABSTRACT

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Subject(s)
Calcitonin Gene-Related Peptide , Macrophages , Neutrophils , Nociceptors , Wound Healing , Animals , Mice , Autocrine Communication , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Efferocytosis , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , Muscle, Skeletal , NAV1.8 Voltage-Gated Sodium Channel/deficiency , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Nociceptors/metabolism , Paracrine Communication , Peripheral Nervous System Diseases/complications , Receptor Activity-Modifying Protein 1/metabolism , Regeneration/drug effects , Skin , Thrombospondin 1/metabolism , Wound Healing/drug effects , Wound Healing/immunology , Humans , Male , Female
2.
Sci Adv ; 6(24): eaba7602, 2020 06.
Article in English | MEDLINE | ID: mdl-32582857

ABSTRACT

Although growth factors (GFs) are key molecules for regenerative medicine, their use has been limited by issues associated with suboptimal delivery systems and incomplete understanding of their signaling dynamics. Here, we explored how proinflammatory signals affect GF regenerative potential. Using bone regeneration in mouse, we found that the regenerative capacity of two clinically relevant GFs (BMP-2 and PDGF-BB) is impaired by interleukin-1 receptor (IL-1R1). Mechanistically, IL-1R1 activation in bone-forming cells desensitizes them to GFs and accelerates senescence. Moreover, administration of the GFs triggers IL-1 release by macrophages. To provide localized and sustained IL-1R1 inhibition, we engineered IL-1R antagonist (IL-1Ra) to bind the extracellular matrix (ECM) very strongly and demonstrate that codelivering GFs with ECM-binding IL-1Ra induces superior regeneration. Thus, we highlight that GF regenerative activity is hindered by proinflammatory signals, and GF-based therapies should integrate immunomodulation. Particularly, ECM-binding IL-1Ra holds clinical translational potential by enhancing efficacy of GF therapies.

3.
Nat Biomed Eng ; 4(4): 463-475, 2020 04.
Article in English | MEDLINE | ID: mdl-31685999

ABSTRACT

Growth factors can stimulate tissue regeneration, but the side effects and low effectiveness associated with suboptimal delivery systems have impeded their use in translational regenerative medicine. Physiologically, growth factor interactions with the extracellular matrix control their bioavailability and spatiotemporal cellular signalling. Growth factor signalling is also controlled at the cell surface level via binding to heparan sulfate proteoglycans, such as syndecans. Here we show that vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) that were engineered to have a syndecan-binding sequence trigger sustained low-intensity signalling (tonic signalling) and reduce the desensitization of growth factor receptors. We also show in mouse models that tonic signalling leads to superior morphogenetic activity, with syndecan-binding growth factors inducing greater bone regeneration and wound repair than wild-type growth factors, as well as reduced tumour growth (associated with PDGF-BB delivery) and vascular permeability (triggered by VEGF-A). Tonic signalling via syndecan binding may also enhance the regenerative capacity of other growth factors.


Subject(s)
Intercellular Signaling Peptides and Proteins/pharmacology , Signal Transduction/drug effects , Syndecans/pharmacology , Wound Healing/drug effects , Animals , Becaplermin/metabolism , Bone Regeneration/drug effects , Capillary Permeability/drug effects , Cell Membrane/drug effects , Cell Proliferation/drug effects , Extracellular Matrix/drug effects , Heparan Sulfate Proteoglycans/metabolism , Humans , Intercellular Signaling Peptides and Proteins/blood , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microfluidics , Models, Animal , Neuropilin-1 , Receptors, Growth Factor/drug effects , Vascular Endothelial Growth Factor A/metabolism
4.
Acta Biomater ; 53: 13-28, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28119112

ABSTRACT

The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. STATEMENT OF SIGNIFICANCE: Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration.


Subject(s)
Regeneration/immunology , Alarmins/immunology , Animals , Biocompatible Materials , Dendritic Cells/immunology , Drug Delivery Systems , Humans , Immunity, Innate , Inflammation Mediators/administration & dosage , Inflammation Mediators/immunology , Leukocytes/immunology , Mast Cells/immunology , Myeloid Cells/immunology , Pericytes/immunology , Regenerative Medicine , Wound Healing/immunology , Wounds and Injuries/immunology
5.
J Mol Biol ; 377(4): 1216-27, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18295795

ABSTRACT

Alpha-conotoxins are small disulfide-constrained peptides from cone snails that act as antagonists at specific subtypes of nicotinic acetylcholine receptors (nAChRs). The 13-residue peptide alpha-conotoxin RgIA (alpha-RgIA) is a member of the alpha-4,3 family of alpha-conotoxins and selectively blocks the alpha9alpha10 nAChR subtype, in contrast to another well-characterized member of this family, alpha-conotoxin ImI (alpha-ImI), which is a potent inhibitor of the alpha7 and alpha3beta2 nAChR subtypes. In this study, we have altered side chains in both the four-residue and the three-residue loops of alpha-RgIA, and have modified its C-terminus. The effects of these changes on activity against alpha9alpha10 and alpha7 nAChRs were measured; the solution structures of alpha-RgIA and its Y10W, D5E, and P6V analogues were determined from NMR data; and resonance assignments were made for alpha-RgIA [R9A]. The structures for alpha-RgIA and its three analogues were well defined, except at the chain termini. Comparison of these structures with reported structures of alpha-ImI reveals a common two-loop backbone architecture within the alpha-4,3 family, but with variations in side-chain solvent accessibility and orientation. Asp5, Pro6, and Arg7 in loop 1 are critical for blockade of both the alpha9alpha10 and the alpha7 subtypes. In loop 2, alpha-RgIA [Y10W] had activity near that of wild-type alpha-RgIA, with high potency for alpha9alpha10 and low potency for alpha7, and had a structure similar to that of wild type. By contrast, Arg9 in loop 2 is critical for specific binding to the alpha9alpha10 subtype, probably because it is larger and more solvent accessible than Ala9 in alpha-ImI. Our findings contribute to a better understanding of the molecular basis for antagonism of the alpha9alpha10 nAChR subtype, which is a target for the development of analgesics for the treatment of chronic neuropathic pain.


Subject(s)
Conotoxins/chemistry , Conotoxins/metabolism , Protein Subunits/metabolism , Receptors, Nicotinic/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Conserved Sequence , Models, Molecular , Molecular Sequence Data , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/metabolism , Rats , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...