Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Microbiol Biotechnol ; 32(11): 1462-1470, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36310361

ABSTRACT

Natural antimicrobial substances are needed as alternatives to synthetic antimicrobials to protect against foodborne pathogens. In this study, a bacteriocin-producing bacterium, Bacillus subtilis HD15, was isolated from doenjang, a traditional Korean fermented soybean paste. We sequenced the complete genome of B. subtilis HD15. This genome size was 4,173,431 bp with a G + C content of of 43.58%, 4,305 genes, and 4,222 protein-coding genes with predicted functions, including a subtilosin A gene cluster. The bacteriocin was purified by ammonium sulfate precipitation, Diethylaminoethanol-Sepharose chromatography, and Sephacryl gel filtration, with 12.4-fold purification and 26.2% yield, respectively. The purified protein had a molecular weight of 3.6 kDa. The N-terminal amino acid sequence showed the highest similarity to Bacillus subtilis 168 subtilosin A (78%) but only 68% similarity to B. tequilensis subtilosin proteins, indicating that the antimicrobial substance isolated from B. subtilis HD15 is a novel bacteriocin related to subtilosin A. The purified protein from B. subtilis HD15 exhibited high antimicrobial activity against Listeria monocytogenes and Bacillus cereus. It showed stable activity in the range 0-70°C and pH 2-10 and was completely inhibited by protease, proteinase K, and pronase E treatment, suggesting that it is a proteinaceous substance. These findings support the potential industrial applications of the novel bacteriocin purified from B. subtilis HD15.


Subject(s)
Bacteriocins , Listeria monocytogenes , Bacillus subtilis/metabolism , Bacillus cereus/genetics , Bacteriocins/genetics , Bacteriocins/pharmacology , Bacteriocins/metabolism , Anti-Bacterial Agents/chemistry , Listeria monocytogenes/metabolism
2.
Animals (Basel) ; 11(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924525

ABSTRACT

Microbiota plays a critical role in the overall growth performance and health status of dairy cows, especially during their early life. Several studies have reported that fecal microbiome of neonatal calves is shifted by various factors such as diarrhea, antibiotic treatment, or environmental changes. Despite the importance of gut microbiome, a lack of knowledge regarding the composition and functions of microbiota impedes the development of new strategies for improving growth performance and disease resistance during the neonatal calf period. In this study, we utilized next-generation sequencing to monitor the time-dependent dynamics of the gut microbiota of dairy calves before weaning (1-8 weeks of age) and further investigated the microbiome changes caused by diarrhea. Metagenomic analysis revealed that continuous changes, including increasing gut microbiome diversity, occurred from 1 to 5 weeks of age. However, the composition and diversity of the fecal microbiome did not change after 6 weeks of age. The most prominent changes in the fecal microbiome composition caused by aging at family level were a decreased abundance of Bacteroidaceae and Enterobacteriaceae and an increased abundance of Prevotellaceae. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis indicated that the abundance of microbial genes associated with various metabolic pathways changed with aging. All calves with diarrhea symptoms showed drastic microbiome changes and about a week later returned to the microbiome of pre-diarrheal stage regardless of age. At phylum level, abundance of Bacteroidetes was decreased (p = 0.09) and that of Proteobacteria increased (p = 0.07) during diarrhea. PICRUSt analysis indicated that microbial metabolism-related genes, such as starch and sucrose metabolism, sphingolipid metabolism, alanine aspartate, and glutamate metabolism were significantly altered in diarrheal calves. Together, these results highlight the important implications of gut microbiota in gut metabolism and health status of neonatal dairy calves.

3.
Animals (Basel) ; 11(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374309

ABSTRACT

Heat stress has been reported to affect the immunity of dairy cows. However, the mechanisms through which this occurs are not fully understood. Two breeds of dairy cow, Holstein and Jersey, have distinct characteristics, including productivity, heat resistance, and disease in high-temperature environments. The objective of this study is to understand the dynamics of the immune response of two breeds of dairy cow to environmental change. Ribonucleic acid sequencing (RNA-seq) results were analyzed to characterize the gene expression change of peripheral blood mononuclear cells (PBMCs) in Holstein and Jersey cows between moderate temperature-humidity index (THI) and high THI environmental conditions. Many of the differentially expressed genes (DEGs) identified are associated with critical immunological functions, particularly phagocytosis, chemokines, and cytokine response. Among the DEGs, CXCL3 and IL1A were the top down-regulated genes in both breeds of dairy cow, and many DEGs were related to antimicrobial immunity. Functional analysis revealed that cytokine and chemokine response-associated pathways in both Holstein and Jersey PBMCs were the most important pathways affected by the THI environmental condition. However, there were also breed-specific genes and pathways that altered according to THI environmental condition. Collectively, there were both common and breed-specific altered genes and pathways in Holstein and Jersey cows. The findings of this study expand our understanding of the dynamics of immunity in different breeds of dairy cow between moderate THI and high THI environmental conditions.

4.
Animals (Basel) ; 10(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630754

ABSTRACT

The microbial community within the rumen can be changed and shaped by heat stress. Accumulating data have suggested that different breeds of dairy cows have differential heat stress resistance; however, the underlying mechanism by which nonanimal factors contribute to heat stress are yet to be understood. This study is designed to determine changes in the rumen microbiome of Holstein and Jersey cows to normal and heat stress conditions. Under heat stress conditions, Holstein cows had a significantly higher respiration rate than Jersey cows. Heat stress increased the rectal temperature of Holstein but not Jersey cows. In the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, Jersey cows had a significantly higher proportion of genes associated with energy metabolism in the normal condition than that with other treatments. Linear discriminant analysis effect size (LEfSe) results identified six taxa as distinguishing taxa between normal and heat stress conditions in Holstein cows; in Jersey cows, 29 such taxa were identified. Changes in the rumen bacterial taxa were more sensitive to heat stress in Jersey cows than in Holstein cows, suggesting that the rumen mechanism is different in both breeds in adapting to heat stress. Collectively, distinct changes in rumen bacterial taxa and functional gene abundance in Jersey cows may be associated with better adaptation ability to heat stress.

5.
PLoS Genet ; 15(10): e1008279, 2019 10.
Article in English | MEDLINE | ID: mdl-31603892

ABSTRACT

Muscle development and lipid accumulation in muscle critically affect meat quality of livestock. However, the genetic factors underlying myofiber-type specification and intramuscular fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12 that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3 gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele carriers exhibited significantly higher values of a* and IMF than q allele carriers. Furthermore, chromatin immunoprecipitation and cotransfection assays showed that the structural variant in the 5'-flanking region of MYH3 abrogated the binding of the myogenic regulatory factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig populations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates domestication. In conclusion, we identified a functional regulatory sequence variant in porcine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important role in improving pork quality in current breeding programs.


Subject(s)
Adipogenesis/genetics , Cytoskeletal Proteins/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/growth & development , Myosins/genetics , Adipose Tissue/growth & development , Adipose Tissue/metabolism , Animals , Breeding , Gene Expression Regulation , Genome-Wide Association Study , Genotype , Meat , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , Nucleotide Motifs , Sus scrofa/genetics , Sus scrofa/metabolism , Swine
6.
Int J Food Microbiol ; 294: 10-17, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30711888

ABSTRACT

This study was conducted to detect and identify microbial populations on pig carcasses at different slaughtering stages and on retail pork cuts at 24 h after slaughter as well as to evaluate the intervention efficiency of sprays containing different concentrations (2% and 4%) of lactic acid. The sprays were applied to the carcass surfaces at the end of the slaughter line. Microbial samples were collected from carcass surfaces after bleeding and after eviscerating, and from retail cuts at 24 h after chilling/spraying. The detected microorganisms were identified through using a Microflex identification instrument and 16S rRNA gene sequencing. The diversity of the bacterial genera; Staphylococcus, Salmonella, Shigella, Enterococci, Escherichia, Acinetobacter and Corynebacterium spp. showed counts ranging from 2.70 to 4.91 log10 cfu/100 cm2 on the carcasses during slaughter. Most of these genera were also detected on the carcasses after 24 h of chilling. Three species (Staphylococcus hyicus, Acinetobacter albensis, and Corynebacterium xerosis) were also found on the retail cuts of non-sprayed carcasses but not on those of the sprayed groups. Significantly greater reductions in all bacterial species were observed on the carcasses and retail cuts that were sprayed with lactic acid, particularly at the 4% level. Thus, spraying with 4% lactic acid may be an effective intervention for controlling bacterial contamination on pig carcasses to improve the microbiological safety of pork meat.


Subject(s)
Bacteria/drug effects , Food Microbiology/methods , Lactic Acid/pharmacology , Red Meat/microbiology , Swine/microbiology , Abattoirs , Animals , Bacteria/genetics , Biodiversity , Colony Count, Microbial , RNA, Ribosomal, 16S/genetics
7.
Antonie Van Leeuwenhoek ; 112(2): 225-235, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30155662

ABSTRACT

The resident bacteria of the gastrointestinal tract (GIT) and the behaviour of these microbes have been poorly characterised in elk as compared to other ruminant animal species such as sheep and cattle. In addition, most microbial community studies of deer gut have focused on rumen or faeces, while other parts of the GIT such as the small and large intestine have received little attention. To address this issue, the present study investigated the diversity of the GIT bacterial community in elk (Cervus canadensis) by 16S rRNA pyrosequencing analysis. Eight distinct GIT segments including the stomach (rumen, omasum, and abomasum), small intestine (duodenum and jejunum), and large intestine (cecum, colon, and rectum) obtained from four elks were examined. We found that bacterial richness and diversity were higher in the stomach and large intestine than in the small intestine (P < 0.05). A total of 733 genera belonging to 26 phyla were distributed throughout elk GITs, with Firmicutes, Bacteroidetes, and Proteobacteria identified as the predominant phyla. In addition, there was spatial heterogeneity in the composition, diversity, and species abundance of microbiota in the GIT (P < 0.0001). To the best of our knowledge, this is the first study to characterise bacterial communities from eight GIT regions of elk by 16S rRNA pyrosequencing.


Subject(s)
Bacteria/isolation & purification , Deer/microbiology , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Cecum/microbiology , Colon/microbiology , DNA, Bacterial/genetics , Feces/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Rumen/microbiology
8.
Asian-Australas J Anim Sci ; 32(2): 249-256, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30056658

ABSTRACT

OBJECTIVE: The present study aimed at comparing the nutritional composition and color traits between two meat types: Horse meat and pork from Korean native black pigs raised in Jeju Island. METHODS: After slaughter 24 h, the longissimus dorsi samples were taken from left side carcasses of the 32-mo-old Jeju female breed horses and the 6-mo-old Korean native black pigs (n = 10 each). The samples were then placed into cool boxes containing ice packs and transported to the Laboratory of Meat Science where all visual fats and connective tissues were trimmed off and then the samples were ground. All the samples were analyzed for nutritional composition (proximate composition, minerals, vitamins, fatty acids, and amino acids) and color traits. RESULTS: The horse meat contained significantly higher collagen, moisture and protein than the pork (p<0.05). The Jeju horse meat showed more desirable fatty acid profiles such as containing significantly lower saturated fatty acids (SFA), higher polyunsaturated fatty acids (PUFA) contents and PUFA/SFA ratios than the pork (p<0.05). Differences in concentrations of ten amino acids existed between the two meat types in which the horse meat had higher values for all these amino acids, total amino acids (20.33 g/100 g) and essential amino acids (10.06 g/100 g) than the pork (p<0.05). Also, the horse meat showed significantly higher concentrations of Fe (34.21 mg/100 g) and Cu (2.47 mg/100 g) than the pork (Fe, 17.42 mg/100 g and Cu, 1.51 mg/100 g) (p<0.05). All the vitamins detected showed statistical differences between the two meat types in which the horse meat had higher concentrations of vitamin B1 (25.19 mg/100 g), B2 (92.32 mg/100 g), B3 (2,115.51 mg/100 g), and B5 (67.13 mg/100 g) than the pork (p<0.05). CONCLUSION: Based on the results obtained in the study, it is concluded that the two meat types studied are rich in nutrients and the animal species strongly affected the nutritional values and color traits of the muscle tissues.

9.
Asian-Australas J Anim Sci ; 31(9): 1458-1463, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30056652

ABSTRACT

OBJECTIVE: This study was done to evaluate the effect of sodium stearoyl-2-lactylate (SSL) supplementation in a total mixed ration (TMR) on the lactation performance, blood parameters, and economic efficacy of mid-lactation Holstein cows. METHODS: Twenty-four cows (body weight 647±11.7 kg) were randomly divided into 4 treatment groups, with six cows per group. The dietary treatments were as follows: basal diet (CON); CON+17.5 g of top dressed SSL (treatment [TRT] 0.05); CON+35 g of SSL (TRT 0.1); and CON+70 g of SSL (TRT 0.2) per 35 kg TMR. RESULTS: The highest level of SSL supplementation (TRT 0.2) significantly improved milk yield during the second period compared to the TRT 0.05 group (5 to 8 wks; 33.28 vs 31.09 kg/d), during the third period compared to both the CON and TRT 0.05 groups (p<0.05) (9 to 13 wks; 32.59 vs 30.64 and 30.01 kg/d) and during the overall experimental period compared to both the CON and TRT 0.05 groups (p<0.05) (1 to 13 wks; 33.43 vs 32.06 and 31.40 kg/d), respectively. No negative effects on hematological or biochemical parameters were observed due to SSL supplementation. Considering both the milk fat and protein content, the total milk price was set at 1,073.60 (TRT 0.05), 1,085.60 (TRT 0.1), 1,086.10 (TRT 0.2), and 1,064.20 (CON) won/L, with consequent total milk profits of -1.7%, 5.4%, and 3.5% for the TRT 0.05, TRT 0.1, and TRT 0.2 diet, respectively, compared to those in the CON diet. CONCLUSION: The milk sales revenue related to SSL supplementation of the TRT 0.1 diet was increased by up to 5.4% compared to the milk sales revenue of the CON diet. Therefore, 0.1% SSL supplementation might be effective and profitable during the mid-lactation period of cows, without producing adverse effects.

10.
Asian-Australas J Anim Sci ; 31(9): 1442-1448, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30056672

ABSTRACT

OBJECTIVE: This study was conducted to evaluate the effect of different levels of total digestible nutrients (TDN) and sodium stearoyl-2-lactylate (SSL) supplementation on growth performance and blood and carcass characteristics in Hanwoo steers during the early fattening period. METHODS: Sixty Hanwoo steers (average body weight, 333±36.4 kg) were randomly allotted to 3 treatments, with twenty steers per treatment, and ten steers per pen with a size of 80 m2. Dietary treatments were as follows: CON, basal diet; treatment (TRT) 0.5, 0.5% down-spec of TDN with 0.1% SSL; TRT 1.0, 1.0% down-spec of TDN with 0.1% SSL. RESULTS: The results demonstrated that average daily gain and feed efficiency increased with TRT 0.5 (0.85 kg and 11.68) vs CON (0.82 kg and 11.27) or TRT 1.0 (0.78 kg and 10.74), indicating that 0.1% SSL supplementation in the feed of early fattening steers may result in a saving of 0.5% TDN. No significant differences were observed amongst all treatments (p> 0.05) for blood metabolite concentration and blood corpuscle values, which were all within the normally accepted range for healthy steers. CONCLUSION: Our study suggests that a TDN 0.5% down spec with 0.1% SSL supplemented feed may be effective and profitable for the early fattening period of Hanwoo steers without causing adverse effects.

11.
Korean J Food Sci Anim Resour ; 38(1): 189-202, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29725237

ABSTRACT

This study was conducted to evaluate the effects of fermenting temperature on the applicability of Lactobacillusplantarum for production of fermented sausages as starter cultures, and its applicable efficiency was also compared with those inoculated with commercial starter culture or non-inoculated control. The L. plantarum isolated from a naturally-fermented meat, identified by 16S rDNA sequencing and again identified by denovo Assembly Analysis method was used as a starter culture. Six treatments: 3 with L. plantarum at different fermenting temperatures (20, 25 and 30°C), and other 3 treatments (1 with commercial starter culture, 1 with its mixture with L. plantarum and 1 non-inoculated control) fermented under the same conditions (25°C) were prepared. Results revealed that the fermenting temperature considerably affected the pH change in samples added with L. plantarum; the highest pH drop rate (1.57 unit) was obtained on the samples fermented at 30°C, followed by those at 25°C (1.3 unit) and 20°C (0.99 unit) after 4 days fermentation. Increasing the temperature up to 30°C resulted in significantly lower spoilage bacteria count (5.15 log CFU/g) and lipid oxidation level in the products inoculated with L. plantarum. The sensory analysis also showed that the samples added with L. plantarum at 30°C had significantly higher odor, taste and acceptability scores than those fermented at lower temperatures. Under the same processing condition, although the L. plantarum showed slightly lower acidification than the commercial starter culture, however, it significantly improved the eating quality of the product.

12.
Int J Biol Macromol ; 112: 1115-1121, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29452184

ABSTRACT

The important platform polysaccharide N-acetylglucosamine (GlcNAc) has great potential to be used in the fields of food, cosmetics, agricultural, pharmaceutical, medicine and biotechnology. This GlcNAc is being produced by traditional methods of environment-unfriendly chemical digestion with strong acids. Therefore, researchers have been paying more attention to enzymatic hydrolysis process for the production of GlcNAc. Hence, in this study, we isolated novel chitinase (Escherichia fergusonii) and chitosanase (Chryseobacterium indologenes, Comamonas koreensis) producing strains from Korean native calves feces, and developed the potential of an eco-friendly microbial progression for GlcNAc production from swollen chitin and chitosan by enzymatic degradation. Maximum chitinase (7.24±0.07U/ml) and chitosanase (8.42±0.09, 8.51±0.25U/ml) enzyme activity were reached in submerged fermentation at an optimal pH of 7.0 and 30°C. In this study, sucrose, yeast extract, (NH4)2SO4, and NaCl were found to be the potential enhancers of exo-chitinase activity and glucose, corn flour, yeast extract, soybean flour, (NH4)2SO4, NH4Cl and K2HPO4 were found to be the potential activator for exo-chitosanase activity. Optimum concentrations of the carbon sources for enhanced chitinase activity were 9.91, 3.21, 9.86, 1.66U/ml and chitosanase activity were 1.63, 1.13, 2.28, 3.71, 9.02, 4.93, and 2.14U/ml. These enzymes efficiently hydrolyzed swollen chitin and chitosan to N-acetylglucosamine were characterized by thin layer chromatography and were further confirmed by high-pressure liquid chromatography. From a commercial perspective, we isolated, optimized and characterized exochitinase from Escherichia fergusonii (HANDI 110) and chitosanase from Chryseobacterium indologenes (HANYOO), and Comamonas koreensis (HANWOO) for the large-scale production of GlcNAc facilitating its potential use in industrial applications.


Subject(s)
Acetylglucosamine/biosynthesis , Chitinases/biosynthesis , Chryseobacterium/enzymology , Comamonas/enzymology , Escherichia/enzymology , Glycoside Hydrolases/biosynthesis , Carbon/pharmacology , Chitin/metabolism , Chitosan/metabolism , Chromatography, Thin Layer , Hydrolysis , Nitrogen/pharmacology , Phylogeny , Salts/pharmacology
13.
J Microbiol ; 56(1): 36-41, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29299848

ABSTRACT

Gram-staining-positive, motile, rod-shaped bacteria, designated as H31022T and H31024 was isolated from rumen contents of a Holstein cow. Optimum growth occurred at 25°C and pH 7.0 on R2A agar medium. Oxidase and catalase activities are positive. The 16S rRNA gene sequence (1,452 bp) of the new isolates revealed they belong to the genus Kurthia of the phylum Firmicutes. Highest gene sequence similarities were assessed to be with Kurthia massiliensis JC30T (98.4%), Kurthia senegalensis JC8ET (97.5%), and Kurthia populi 10y-14T (97.4%). Kurthia sibirica DSM 4747T (97.3%), Kurthia zopfii NBRC 101529T (97.0%), and Kurthia gibsonii NCIMB 9758T (96.7%). DNA G + C content of strains H31022T and H31024 were 34.4% and 39.7%. Strains H31022T and H31024 has the following chemotaxonomic characteristics; the major fatty acids are iso-C15:0, iso-C14:0 and anteiso-C15; polar lipid profile contained diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), unknown aminophospholipids (APL), unknown glycolipids (GL), unknown phospholipids (PL), and unknown polar lipids (L); the major quinone is MK-7. Based on polyphasic taxonomic analysis, strains H31022T (= KCTC 33923T = JCM 19640T) and H31024 (= KCTC 33924T = JCM 19641T) identified a novel species in the genus Kurthia for which the name Kurthia ruminicola sp. nov. is proposed.


Subject(s)
Cattle/microbiology , Planococcaceae/isolation & purification , Rumen/microbiology , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Phospholipids/metabolism , Phylogeny , Planococcaceae/classification , Planococcaceae/genetics , Planococcaceae/metabolism , RNA, Ribosomal, 16S/genetics
14.
Meat Sci ; 137: 16-23, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29149625

ABSTRACT

As an attempt to control bacterial cross-contamination of beef carcasses, in the present investigation acetic acid and lactic acid (3% v/v) were used for bacterial decontamination. For the decontamination, cows were sprayed with each above acid at two different stages; (i) on live animal's hides, (ii) on carcass surfaces immediately after slaughter. Microbiological samples were taken on different hide areas of animals before spraying and on carcass surfaces at 24h after spraying. Meat quality traits were also analyzed on the sprayed animals. The detected microorganisms were identified using 16SrRNA gene sequencing. A diversity of bacterial species such as Staphylococcus, Shigella, Bacillus, Escherichia and Salmonella etc. were found on both external hide and carcass surface samples. The decontamination sprays significantly reduced the numbers (2-5 log unit) of all aforementioned bacterial species on carcass surfaces as compared with non-sprayed control. Thus, the two times-spray applications with the acid could be an effective tool for reducing bacterial cross-contaminations of beef carcass without adverse effect on meat quality.


Subject(s)
Abattoirs , Bacteria/drug effects , Disinfection/methods , Red Meat/microbiology , Animals , Bacteria/isolation & purification , Cattle , Citric Acid/pharmacology , Colony Count, Microbial , Female , Food Handling/methods , Food Microbiology , Lactic Acid/pharmacology , RNA, Ribosomal, 16S , Skin/microbiology
15.
Korean J Food Sci Anim Resour ; 38(6): 1253-1260, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30675118

ABSTRACT

Pig small intestine not only is used as food but also for sausage casings production in many countries worldwide. However, it is well recognized that the small intestine is important source of spoilage and pathogenic bacteria. The present study aimed at investigating the effects of different washing and packaging methods on the changes of microbial levels and physicochemical characteristics of pig small intestine. After collecting and trimming off of visible fats, the pig small intestine samples were treated with; (i) different packaging methods: aerobic packaging (AP), skin packaging (SP), and vacuum packaging (VP); and (ii) washing with different concentrations of acetic acid. The treated samples were then stored at 4℃ for 1, 4, 7, and 10 d. At 1-d storage, higher pH value was found in the AP-treated samples, however, after 7 to 10 days the samples treated with SP had higher values compared to the ones treated with AP and VP (p<0.05). Thiobarbituric acid reactive substances values were higher in the AP-treated samples than those of the SP- and VP- treated samples at 7-d storage (p<0.05). At 10th d, total plate counts (TPC) were higher in the control than in the acetic acid-washed samples (p<0.05). Additionally, the TPC was lower in the SP- and VP-treated samples than the AP-treated samples at 7-d storage (p<0.05). These obtained results suggest that the applications of washing with acetic acid solution and/or SP and VP methods could be an effective way to extend the shelf-life of pig small intestine during cold distribution.

16.
Asian-Australas J Anim Sci ; 30(12): 1756-1763, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28728368

ABSTRACT

OBJECTIVE: The study aimed at assessing the effects of frozen storage duration on quality characteristics, lipid oxidation and sensory quality of various horse muscles. METHODS: Five representative muscles: longissimus dorsi (LD), gluteus medius (GM), semimembranosus (SM), biceps femoris (BF), and triceps brachii (TB) at 24 h post-mortem obtained from 28-mo-old Jeju female breed horses (n = 8) were used in the present investigation. The muscles were vacuum-packaged and frozen at -20°C for 120, 240, and 360 days. All the samples were analyzed for thawing and cooking losses, pH, Warner-Bratzler shear forces (WBSF), color traits, total volatile basic nitrogen (TVBN), thiobarbituric acid reactive substances (TBARS) and sensory traits. The muscle samples analyzed on day 0 of frozen storage (fresh, non-frozen) were used for comparison. RESULTS: Results revealed that thawing and cooking losses significantly (p<0.05) increased in all the muscles after 120 days and then remained unchanged up to 360 days of frozen storage. The TBARS and TVBN contents significantly increased as increasing frozen storage time up to 360 days (p<0.05). While, significant decreases in WBSF values were observed for all the muscles with increased frozen storage time (p<0.05). Frozen storage variously affected the color traits of the muscles for instance; the redness of LD, GM, and BF muscles showed a decreasing tendency during frozen storage while it was not changed in TB and SM muscles. Furthermore, the frozen storage did not produce detrimental effects on sensory quality as it did not cause flavor and juiciness defects whereas it partially improved the tenderness of all the muscles studied. CONCLUSION: Based on the results obtained from our work, it is concluded that frozen storage could be applied to increase the long-term shelf life of horsemeat while still retaining its sensory quality.

17.
Asian-Australas J Anim Sci ; 30(8): 1093-1098, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28423887

ABSTRACT

OBJECTIVE: The aim of the current study was to describe the relationship between milk yield and lactation number, stage, length and milking frequency in Korean Holstein dairy cows using an automatic milking system (AMS). METHODS: The original data set consisted of observations from April to October 2016 of 780 Holstein cows, with a total of 10,751 milkings. Each time a cow was milked by an AMS during the 24 h, the AMS management system recorded identification numbers of the AMS unit, the cow being milking, date and time of the milking, and milk yield (kg) as measured by the milk meters installed on each AMS unit, date and time of the lactation, lactation stage, milking frequency (NoM). Lactation stage is defined as the number of days milking per cows per lactation. Milk yield was calculated per udder quarter in the AMS and was added to 1 record per cow and trait for each milking. Milking frequency was measured the number of milkings per cow per 24 hour. RESULTS: From the study results, a significant relationship was found between the milk yield and lactation number (p<0.001), with the maximum milk yield occurring in the third lactation cows. We recorded the highest milk yield, in a greater lactation length period of early stage (55 to 90 days) at a 4× milking frequency/d, and the lowest milk yield was observed in the later stage (>201 days) of cows. Also, milking frequency had a significant influence on milk yield (p<0.001) in Korean Holstein cows using AMS. CONCLUSION: Detailed knowledge of these factors such as lactation number, stage, length, and milking frequency associated with increasing milk yield using AMS will help guide future recommendations to producers for maximizing milk yield in Korean Dairy industries.

18.
Biotechnol Biofuels ; 10: 59, 2017.
Article in English | MEDLINE | ID: mdl-28293289

ABSTRACT

BACKGROUND: N-acetyl-ß-d-glucosamine (GlcNAc)6 is extensively used as an important bio-agent and a functional food additive. The traditional chemical process for GlcNAc production has some problems such as high production cost, low yield, and acidic pollution. Therefore, to discover a novel chitinase that is suitable for bioconversion of chitin to GlcNAc would be of great value. RESULTS: Here, we describe the complete isolation and functional characterization of a novel exo-chitinase from Acinetobacter parvus HANDI 309 for the conversion of chitin. The identified exo-chitinase mainly produced N-acetyl-d-glucosamine, using chitin as a substrate by submerged fermentation. The A. parvus HANDI 309 biofuels producing exo-chitinase were characterized by TLC, and was further validated and quantified by HPLC. Furthermore, the optimal temperature and pH for the exo-chitinase activity was obtained in the culture conditions of 30 °C and 7.0, respectively. The maximum growth of the stationary phase was reached in 24 h after incubation. These results suggest that A. parvus HANDI 309 biofuels producing exo-chitinases may have great potential in chitin to N-acetyl-d-glucosamine conversion. CONCLUSIONS: The excellent thermostability and hydrolytic properties may give the exo-chitinase great potential in chitin to GlcNAc conversion in industry. This is the first report that A. parvus HANDI 309 is a novel bacterial strain that has the ability to produce an enormous amount of exo-chitinase-producing bio-agents in a short time on an industrial scale without any pretreatment, as well as being potentially valuable in the food and pharmaceutical industries.

19.
Korean J Food Sci Anim Resour ; 37(1): 10-17, 2017.
Article in English | MEDLINE | ID: mdl-28316466

ABSTRACT

This effect of Monascus and Laccaic acid on the chemical composition, physical, texture and sensory properties of sausage were investigated during storage. Eight treatments (T) of sausage such as T1 (12 ppm sodium nitrite), while T2, T3, T4, T5, T6 and T7 were formulated with different ratios of Monascus/Laccaic acid: 63/7.0, 108/12, 135/15, 59.5/10.5, 102/18 and 127.5/22.5 ppm, respectively. The batch formulated without nitrite or Monascus and laccaic acid was served as control (C). The control sausages had higher pH values compared to the treated ones at 3, 10 and 28 d storage (p<0.05). After 10 d storage, the pH values decreased in treated sausage samples (p<0.05). The T1 and T4 presented the lowest yellowness and lightness values, respectively over the storage period. The redness values were increased as increasing Monascus and Laccaic acid amounts (T2-T4, T5-T7). The addition of Monascus and Laccaic acid had significantly higher hardness and springiness values (p<0.05) compared with the control in 3, 19 or 28 d storage. The results indicated that the addition of Monascus and Laccaic acid could improve the redness of the products.

20.
Asian-Australas J Anim Sci ; 30(3): 432-438, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27739291

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the effect of combinations of NaNO2 and NaCl concentrations on Listeria monocytogenes (L. monocytogenes) growth in emulsion-type sausage. METHODS: Emulsion-type sausages formulated with different combinations of NaNO2 (0 and 10 ppm) and NaCl (1.00%, 1.25%, and 1.50%) were inoculated with a five-strain L. monocytogenes mixture, and stored at 4°C, 10°C, and 15°C, under aerobic or vacuum conditions. L. monocytogenes cell counts were measured at appropriate intervals, and kinetic parameters such as growth rate and lag phase duration (LPD) were calculated using the modified Gompertz model. RESULTS: Growth rates increased (0.004 to 0.079 Log colony-forming unit [CFU]/g/h) as storage temperature increased, but LPD decreased (445.11 to 8.35 h) as storage temperature and NaCl concentration increased. The effect of combinations of NaCl and low-NaNO2 on L. monocytogenes growth was not observed at 4°C and 10°C, but it was observed at 15°C, regardless of atmospheric conditions. CONCLUSION: These results indicate that low concentrations of NaNO2 and NaCl in emulsion-type sausage may not be sufficient to prevent L. monocytogenes growth, regardless of whether they are vacuum-packaged and stored at low temperatures. Therefore, additional techniques are necessary for L. monocytogenes control in the product.

SELECTION OF CITATIONS
SEARCH DETAIL
...