Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
2.
Diabetes Metab J ; 47(6): 784-795, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37915185

ABSTRACT

BACKGRUOUND: Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are currently used to treat patients with diabetes. Previous studies have demonstrated that treatment with SGLT-2 inhibitors is accompanied by altered metabolic phenotypes. However, it has not been investigated whether the hypothalamic circuit participates in the development of the compensatory metabolic phenotypes triggered by the treatment with SGLT-2 inhibitors. METHODS: Mice were fed a standard diet or high-fat diet and treated with dapagliflozin, an SGLT-2 inhibitor. Food intake and energy expenditure were observed using indirect calorimetry system. The activity of hypothalamic neurons in response to dapagliflozin treatment was evaluated by immunohistochemistry with c-Fos antibody. Quantitative real-time polymerase chain reaction was performed to determine gene expression patterns in the hypothalamus of dapagliflozin-treated mice. RESULTS: Dapagliflozin-treated mice displayed enhanced food intake and reduced energy expenditure. Altered neuronal activities were observed in multiple hypothalamic nuclei in association with appetite regulation. Additionally, we found elevated immunosignals of agouti-related peptide neurons in the paraventricular nucleus of the hypothalamus. CONCLUSION: This study suggests the functional involvement of the hypothalamus in the development of the compensatory metabolic phenotypes induced by SGLT-2 inhibitor treatment.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Humans , Mice , Animals , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypothalamus/metabolism , Glucose/metabolism , Phenotype , Neurons/metabolism , Sodium/metabolism
3.
Chem Biol Interact ; 385: 110733, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37769865

ABSTRACT

Cisplatin is a chemotherapeutic drug commonly used for treating different types of cancer. However, long-term use can lead to side effects, including anorexia, nausea, vomiting, and weight loss, which negatively affect the patient's quality of life and ability to undergo chemotherapy. This study aimed to investigate the mechanisms underlying the development of a negative energy balance during cisplatin treatment. Mice treated with cisplatin exhibit reduced food intake, body weight, and energy expenditure. We observed altered neuronal activity in the hypothalamic nuclei involved in the regulation of energy metabolism in cisplatin-treated mice. In addition, we observed activation of microglia and inflammation in the hypothalamus following treatment with cisplatin. Consistent with this finding, inhibition of microglial activation effectively rescued cisplatin-induced anorexia and body weight loss. The present study identified the role of hypothalamic neurons and inflammation linked to microglial activation in the anorexia and body weight loss observed during cisplatin treatment. These findings provide insight into the mechanisms underlying the development of metabolic abnormalities during cisplatin treatment and suggest new strategies for managing these side effects.

4.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569904

ABSTRACT

TTF-1 stimulates appetite by regulating the expression of agouti-related peptide (AgRP) and proopiomelanocortin (POMC) genes in the hypothalamus of starving animals. However, the mechanism underlying TTF-1's response to decreased energy levels remains elusive. Here, we provide evidence that the NAD+-dependent deacetylase, sirtuin1 (Sirt1), activates TTF-1 in response to energy deficiency. Energy deficiency leads to a twofold increase in the expression of both Sirt1 and TTF-1, leading to the deacetylation of TTF-1 through the interaction between the two proteins. The activation of Sirt1, induced by energy deficiency or resveratrol treatment, leads to a significant increase in the deacetylation of TTF-1 and promotes its nuclear translocation. Conversely, the inhibition of Sirt1 prevents these Sirt1 effects. Notably, a point mutation in a lysine residue of TTF-1 significantly disrupts its deacetylation and thus nearly completely hinders its ability to regulate AgRP and POMC gene expression. These findings highlight the importance of energy-deficiency-induced deacetylation of TTF-1 in the control of AgRP and POMC gene expression.


Subject(s)
Pro-Opiomelanocortin , Sirtuin 1 , Animals , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Hypothalamus/metabolism
5.
Diabetes ; 72(10): 1384-1396, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37478284

ABSTRACT

Eukaryotic translation initiation factor 2α (eIF2α) is a key mediator of the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR). In mammals, eIF2α is phosphorylated by overnutrition-induced ER stress and is related to the development of obesity. Here, we studied the function of phosphorylated eIF2α (p-eIF2α) in agouti-related peptide (AgRP) neurons using a mouse model (AgRPeIF2αA/A) with an AgRP neuron-specific substitution from Ser 51 to Ala in eIF2α, which impairs eIF2α phosphorylation in AgRP neurons. These AgRPeIF2αA/A mice had decreases in starvation-induced AgRP neuronal activity and food intake and an increased responsiveness to leptin. Intriguingly, impairment of eIF2α phosphorylation produced decreases in the starvation-induced expression of UPR and autophagy genes in AgRP neurons. Collectively, these findings suggest that eIF2α phosphorylation regulates AgRP neuronal activity by affecting intracellular responses such as the UPR and autophagy during starvation, thereby participating in the homeostatic control of whole-body energy metabolism. ARTICLE HIGHLIGHTS: This study examines the impact of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, triggered by an energy deficit, on hypothalamic AgRP neurons and its subsequent influence on whole-body energy homeostasis. Impaired eIF2α phosphorylation diminishes the unfolded protein response and autophagy, both of which are crucial for energy deficit-induced activation of AgRP neurons. This study highlights the significance of eIF2α phosphorylation as a cellular marker indicating the availability of energy in AgRP neurons and as a molecular switch that regulates homeostatic feeding behavior.


Subject(s)
Eukaryotic Initiation Factor-2 , eIF-2 Kinase , Animals , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/metabolism , Feeding Behavior , Mammals/metabolism , Neurons/metabolism , Peptides/metabolism , Phosphorylation , Mice
6.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834616

ABSTRACT

Molecular profiling of the hypothalamus in response to metabolic shifts is a critical cue to better understand the principle of the central control of whole-body energy metabolism. The transcriptional responses of the rodent hypothalamus to short-term calorie restriction have been documented. However, studies on the identification of hypothalamic secretory factors that potentially contribute to the control of appetite are lacking. In this study, we analyzed the differential expression of hypothalamic genes and compared the selected secretory factors from the fasted mice with those of fed control mice using bulk RNA-sequencing. We verified seven secretory genes that were significantly altered in the hypothalamus of fasted mice. In addition, we determined the response of secretory genes in cultured hypothalamic cells to treatment with ghrelin and leptin. The current study provides further insights into the neuronal response to food restriction at the molecular level and may be useful for understanding the hypothalamic control of appetite.


Subject(s)
Hypothalamus , Starvation , Mice , Animals , Hypothalamus/metabolism , Leptin/metabolism , Starvation/metabolism , Appetite/physiology , Fasting/physiology , Ghrelin/metabolism , Gene Expression Profiling
7.
Mol Metab ; 66: 101636, 2022 12.
Article in English | MEDLINE | ID: mdl-36375792

ABSTRACT

OBJECTIVE: Thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is predominantly expressed in discrete areas of the hypothalamus, which acts as the central unit for the regulation of whole-body energy homeostasis. Current study designed to identify the roles of TTF-1 on the responsiveness of the hypothalamic circuit activity to circulating leptin and the development of obesity linked to the insensitivity of leptin. METHODS: We generated conditional knock-out mice by crossing TTF-1flox/flox mice with leptin receptor (ObRb)Cre or proopiomelanocortin (POMC)Cre transgenic mice to interrogate the contributions of TTF-1 in leptin signaling and activity. Changes of food intake, body weight and energy expenditure were evaluated in standard or high fat diet-treated transgenic mice by using an indirect calorimetry instrument. Molecular mechanism was elucidated with immunohistochemistry, immunoblotting, quantitative PCR, and promoter assays. RESULTS: The selective deletion of TTF-1 gene expression in cells expressing the ObRb or POMC enhanced the anorexigenic effects of leptin as well as the leptin-induced phosphorylation of STAT3. We further determined that TTF-1 inhibited the transcriptional activity of the ObRb gene. In line with these findings, the selective deletion of the TTF-1 gene in ObRb-positive cells led to protective effects against diet-induced obesity via the amelioration of leptin resistance. CONCLUSIONS: Collectively, these results suggest that hypothalamic TTF-1 participates in the development of obesity as a molecular component involved in the regulation of cellular leptin signaling and activity. Thus, TTF-1 may represent a therapeutic target for the treatment, prevention, and control of obesity.


Subject(s)
Leptin , Pro-Opiomelanocortin , Thyroid Nuclear Factor 1 , Animals , Mice , Hypothalamus/metabolism , Leptin/genetics , Leptin/metabolism , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Thyroid Nuclear Factor 1/genetics , Thyroid Nuclear Factor 1/metabolism
8.
Int J Mol Sci ; 23(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35743267

ABSTRACT

Recent advances in optical clearing techniques have dramatically improved deep tissue imaging by reducing the obscuring effects of light scattering and absorption. However, these optical clearing methods require specialized equipment or a lengthy undertaking with complex protocols that can lead to sample volume changes and distortion. In addition, the imaging of cleared tissues has limitations, such as fluorescence bleaching, harmful and foul-smelling solutions, and the difficulty of handling samples in high-viscosity refractive index (RI) matching solutions. To address the various limitations of thick tissue imaging, we developed an Aqueous high refractive Index matching and tissue Clearing solution for Imaging (termed AICI) with a one-step tissue clearing protocol that was easily made at a reasonable price in our own laboratory without any equipment. AICI can rapidly clear a 1 mm thick brain slice within 90 min with simultaneous RI matching, low viscosity, and a high refractive index (RI = 1.466), allowing the imaging of the sample without additional processing. We compared AICI with commercially available RI matching solutions, including optical clear agents (OCAs), for tissue clearing. The viscosity of AICI is closer to that of water compared with other RI matching solutions, and there was a less than 2.3% expansion in the tissue linear morphology during 24 h exposure to AICI. Moreover, AICI remained fluid over 30 days of air exposure, and the EGFP fluorescence signal was only reduced to ~65% after 10 days. AICI showed a limited clearing of brain tissue >3 mm thick. However, fine neuronal structures, such as dendritic spines and axonal boutons, could still be imaged in thick brain slices treated with AICI. Therefore, AICI is useful not only for the three-dimensional (3D) high-resolution identification of neuronal structures, but also for the examination of multiple structural imaging by neuronal distribution, projection, and gene expression in deep brain tissue. AICI is applicable beyond the imaging of fluorescent antibodies and dyes, and can clear a variety of tissue types, making it broadly useful to researchers for optical imaging applications.


Subject(s)
Brain , Optical Imaging , Animals , Brain/diagnostic imaging , Fluorescent Antibody Technique , Imaging, Three-Dimensional/methods , Mice , Neurons , Optical Imaging/methods , Refractometry
9.
Metabolites ; 12(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35629911

ABSTRACT

Nutrient availability and utilization in hypothalamic cells are directly associated with the regulation of whole-body energy homeostasis. Thus, establishing metabolic profiling in the hypothalamus in response to metabolic shift is valuable to better understand the underlying mechanism of appetite regulation. In the present study, we evaluate the alteration of lipophilic and hydrophilic metabolites in both the hypothalamus and serum of fasted mice. Fasted mice displayed an elevated ketone body and decreased lactate levels in the hypothalamus. In support of the metabolite data, we further confirmed that short-term food deprivation resulted in the altered expression of genes involved in cellular metabolic processes, including the shuttling of fuel sources and the production of monocarboxylates in hypothalamic astrocytes. Overall, the current study provides useful information to close the gap in our understanding of the molecular and cellular mechanisms underlying hypothalamic control of whole-body energy metabolism.

10.
Int J Mol Sci ; 23(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35269751

ABSTRACT

The hypothalamic arcuate nucleus (Arc) is a central unit that controls the appetite through the integration of metabolic, hormonal, and neuronal afferent inputs. Agouti-related protein (AgRP), proopiomelanocortin (POMC), and dopaminergic neurons in the Arc differentially regulate feeding behaviors in response to hunger, satiety, and appetite, respectively. At the time of writing, the anatomical and electrophysiological characterization of these three neurons has not yet been intensively explored. Here, we interrogated the overall characterization of AgRP, POMC, and dopaminergic neurons using genetic mouse models, immunohistochemistry, and whole-cell patch recordings. We identified the distinct geographical location and intrinsic properties of each neuron in the Arc with the transgenic lines labelled with cell-specific reporter proteins. Moreover, AgRP, POMC, and dopaminergic neurons had different firing activities to ghrelin and leptin treatments. Ghrelin led to the increased firing rate of dopaminergic and AgRP neurons, and the decreased firing rate of POMC. In sharp contrast, leptin resulted in the decreased firing rate of AgRP neurons and the increased firing rate of POMC neurons, while it did not change the firing rate of dopaminergic neurons in Arc. These findings demonstrate the anatomical and physiological uniqueness of three hypothalamic Arc neurons to appetite control.


Subject(s)
Arcuate Nucleus of Hypothalamus , Pro-Opiomelanocortin , Agouti-Related Protein/genetics , Animals , Appetite , Arcuate Nucleus of Hypothalamus/metabolism , Ghrelin/metabolism , Ghrelin/pharmacology , Leptin/metabolism , Mice , Neurons/metabolism , Pro-Opiomelanocortin/genetics
11.
Biochem Biophys Res Commun ; 599: 134-141, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35182939

ABSTRACT

Metabolic abnormalities are tightly connected to the perturbation of normal brain functions, thereby causing multiple neurodegenerative diseases. The hypothalamus is the master unit that controls the whole-body energy homeostasis. Thus, altered metabolic activity in the hypothalamus could be a crucial clue to better understand the development of metabolic disorders during aging. The current study aimed to investigate the changes in hypothalamic metabolites according to the aging process using gas chromatography-mass spectrometry. We identified that multiple metabolites and neurotransmitters were effectively reduced in the hypothalamus of aged mice. In addition, we observed increased levels of genes linked to the production and utilization of monocarboxylates in the aged hypothalamus, indicating the initiation of metabolic activity to produce alternative nutrient sources. Lastly, we found a reduced number of astrocytes in the hypothalamus of aged mice, suggesting that reduced nutrient availability in the hypothalamus might be associated with the decreased activity of astrocytes during aging. Collectively, the present study suggests that the deterioration of metabolic activities in the hypothalamus might be a primary cause and/or outcome of metabolic diseases associated with the aging process.


Subject(s)
Aging/metabolism , Hypothalamus/metabolism , Metabolome/physiology , Animals , Astrocytes/metabolism , Blood/metabolism , Gene Expression Regulation , Glial Fibrillary Acidic Protein/immunology , Hypothalamus/cytology , Hypothalamus/physiology , Immunohistochemistry/methods , Male , Mice, Inbred C57BL
12.
Biomolecules ; 12(2)2022 01 31.
Article in English | MEDLINE | ID: mdl-35204737

ABSTRACT

Spexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake and body weight gain. SPX was found to be expressed in cells expressing leptin receptor ObRb in the mouse hypothalamus. In line with this finding, icv leptin injection increased SPX mRNA in the ObRb-positive cells of the hypothalamus, which was blocked by treatment with a STAT3 inhibitor. Leptin also increased STAT3 binding to the SPX promoter, as measured by chromatin immunoprecipitation assays. In vivo blockade of hypothalamic SPX biosynthesis with an antisense oligodeoxynucleotide (AS ODN) resulted in a diminished leptin effect on food intake and body weight. AS ODN reversed leptin's effect on the proopiomelanocortin (POMC) mRNA expression and, moreover, decreased leptin-induced STAT3 binding to the POMC promoter sequence. These results suggest that SPX is involved in leptin's action on POMC gene expression in the hypothalamus and impacts the anorexigenic effects of leptin.


Subject(s)
Leptin , Neuropeptides , Animals , Feeding Behavior , Hypothalamus/metabolism , Leptin/metabolism , Leptin/pharmacology , Mice , Neuropeptides/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/pharmacology
13.
Biochem Biophys Res Commun ; 578: 1-6, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34520979

ABSTRACT

Developmentally regulated GTP-binding protein 2 (DRG2) participates in the regulation of proliferation and differentiation of multiple cells. However, whether DRG2 regulates adipocyte differentiation and related metabolic control remains elusive. This study revealed increases in body weight and adiposity in DRG2 transgenic (Tg) mice overexpressing DRG2. Consistent with these results, DRG2 Tg mice showed increased expression of genes involved in adipogenesis and lipid metabolism in the white adipose tissue. DRG2 was also identified to control adipogenesis by cooperating with peroxisome proliferator activated receptor-γ (PPAR-γ) in cultured adipocytes. Overall, the findings of the current study suggest that DRG2 plays an active role in regulating adipocyte differentiation, and thus participates in the development of obesity during exposure to a fat-rich diet.


Subject(s)
Adipose Tissue, White/cytology , GTP-Binding Proteins/metabolism , PPAR gamma/metabolism , Adipogenesis , Adipose Tissue, White/metabolism , Animals , Body Weight , Cell Differentiation , Disease Models, Animal , GTP-Binding Proteins/genetics , Lipid Metabolism , Mice , Mice, Transgenic
14.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805094

ABSTRACT

Tristetraprolin (TTP), an RNA-binding protein, controls the stability of RNA by capturing AU-rich elements on their target genes. It has recently been identified that TTP serves as an anti-inflammatory protein by guiding the unstable mRNAs of pro-inflammatory proteins in multiple cells. However, it has not yet been investigated whether TTP affects the inflammatory responses in the hypothalamus. Since hypothalamic inflammation is tightly coupled to the disturbance of energy homeostasis, we designed the current study to investigate whether TTP regulates hypothalamic inflammation and thereby affects energy metabolism by utilizing TTP-deficient mice. We observed that deficiency of TTP led to enhanced hypothalamic inflammation via stimulation of a variety of pro-inflammatory genes. In addition, microglial activation occurred in the hypothalamus, which was accompanied by an enhanced inflammatory response. In line with these molecular and cellular observations, we finally confirmed that deficiency of TTP results in elevated core body temperature and energy expenditure. Taken together, our findings unmask novel roles of hypothalamic TTP on energy metabolism, which is linked to inflammatory responses in hypothalamic microglial cells.


Subject(s)
Hyperthermia/genetics , Hypothalamus/pathology , Microglia/metabolism , Tristetraprolin/deficiency , AU Rich Elements , Animals , Body Temperature , Body Weight , Cytokines/metabolism , Homeostasis , Inflammation , Macrophages/metabolism , Mice , Mice, Inbred C57BL , RNA Stability , RNA, Messenger/metabolism , Tristetraprolin/genetics , Tristetraprolin/metabolism
15.
Biochem Biophys Res Commun ; 558: 44-50, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33895550

ABSTRACT

Sickness symptoms exerted via inflammatory responses occur in several infectious and chronic diseases. A growing body of evidence suggests that altered nutrient availability and metabolism are tightly coupled to inflammatory processes. However, the relationship between metabolic shifts and the development of the sickness response has not been explored fully. Therefore, we aimed to evaluate metabolic phenotypes with a mouse model showing sickness symptoms via systemic administration of lipopolysaccharide (LPS) in the present study. LPS injection elevated the lipid utilization and circulating levels of fatty acids. It also increased the levels of ß-hydroxybutyric acid, a ketone body produced from fatty acids. We confirmed the functional connectivity between nutrient utilization and inflammatory responses and demonstrated enhanced lipid utilization in the hypothalamus providing insights into hypothalamic control of sickness responses. Collectively, these findings could help develop new therapeutic strategies to treat patients with severe sickness symptoms associated with infectious and chronic human diseases.


Subject(s)
Illness Behavior/drug effects , Illness Behavior/physiology , Lipid Metabolism/drug effects , Lipopolysaccharides/toxicity , Animals , Anorexia/etiology , Cytokines/metabolism , Disease Models, Animal , Energy Metabolism/drug effects , Energy Metabolism/physiology , Fatty Acids/blood , Fatty Acids/metabolism , Fever/etiology , Humans , Hypothalamus/drug effects , Hypothalamus/metabolism , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Oxygen Consumption/drug effects
16.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557390

ABSTRACT

Adiponectin, an adipose tissue-derived hormone, plays integral roles in lipid and glucose metabolism in peripheral tissues, such as the skeletal muscle, adipose tissue, and liver. Moreover, it has also been shown to have an impact on metabolic processes in the central nervous system. Astrocytes comprise the most abundant cell type in the central nervous system and actively participate in metabolic processes between blood vessels and neurons. However, the ability of adiponectin to control nutrient metabolism in astrocytes has not yet been fully elucidated. In this study, we investigated the effects of adiponectin on multiple metabolic processes in hypothalamic astrocytes. Adiponectin enhanced glucose uptake, glycolytic processes and fatty acid oxidation in cultured primary hypothalamic astrocytes. In line with these findings, we also found that adiponectin treatment effectively enhanced synthesis and release of monocarboxylates. Overall, these data suggested that adiponectin triggers catabolic processes in astrocytes, thereby enhancing nutrient availability in the hypothalamus.


Subject(s)
Adiponectin/metabolism , Astrocytes/metabolism , Glucose/metabolism , Hypothalamus/metabolism , Nutrients/metabolism , Adiponectin/genetics , Animals , Astrocytes/cytology , Energy Metabolism , Female , Glycolysis , Hypothalamus/cytology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
17.
J Neuroinflammation ; 17(1): 195, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32560726

ABSTRACT

BACKGROUND: A growing body of evidence shows that hypothalamic inflammation is an important factor in the initiation of obesity. In particular, reactive gliosis accompanied by inflammatory responses in the hypothalamus are pivotal cellular events that elicit metabolic abnormalities. In this study, we examined whether MyD88 signaling in hypothalamic astrocytes controls reactive gliosis and inflammatory responses, thereby contributing to the pathogenesis of obesity. METHODS: To analyze the role of astrocyte MyD88 in obesity pathogenesis, we used astrocyte-specific Myd88 knockout (KO) mice fed a high-fat diet (HFD) for 16 weeks or injected with saturated free fatty acids. Astrocyte-specific gene expression in the hypothalamus was determined using real-time PCR with mRNA purified by the Ribo-Tag system. Immunohistochemistry was used to detect the expression of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, phosphorylated signal transducer and activator of transcription 3, and α-melanocyte-stimulating hormone in the hypothalamus. Animals' energy expenditure was measured using an indirect calorimetry system. RESULTS: The astrocyte-specific Myd88 KO mice displayed ameliorated hypothalamic reactive gliosis and inflammation induced by injections of saturated free fatty acids and a long-term HFD. Accordingly, the KO mice were resistant to long-term HFD-induced obesity and showed an improvement in HFD-induced leptin resistance. CONCLUSIONS: These results suggest that MyD88 in hypothalamic astrocytes is a critical molecular unit for obesity pathogenesis that acts by mediating HFD signals for reactive gliosis and inflammation.


Subject(s)
Astrocytes/metabolism , Energy Metabolism/physiology , Hypothalamus/metabolism , Inflammation/metabolism , Myeloid Differentiation Factor 88/metabolism , Animals , Blood Glucose/metabolism , Diet, High-Fat , Gliosis/genetics , Gliosis/metabolism , Gliosis/pathology , Hypothalamus/pathology , Inflammation/genetics , Inflammation/pathology , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Signal Transduction/physiology
18.
Cells ; 8(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835795

ABSTRACT

Beta-aminoisobutyric acid (BAIBA), a natural thymine catabolite, is involved in the beneficial effects of exercise on metabolic disorders. In particular, it has been reported to reverse the inflammatory processes observed in the peripheral organs of animal models of obesity. Therefore, this study aimed to investigate whether BAIBA improves hypothalamic inflammation, which is also tightly coupled with the development of obesity. We observed that treatment with BAIBA effectively reversed palmitic acid-induced hypothalamic inflammation and microglial activation in vivo. Consistent with these findings, we confirmed that BAIBA reversed body weight gain and increased adiposity observed in mice fed with a high-fat diet. Collectively, the current findings evidence the beneficial impacts of BAIBA on the imbalance of energy metabolism linked to hypothalamic inflammation.


Subject(s)
Aminoisobutyric Acids/administration & dosage , Encephalitis/drug therapy , Hypothalamus/drug effects , Microglia/immunology , Obesity/drug therapy , Palmitic Acid/adverse effects , Aminoisobutyric Acids/pharmacology , Animals , Cell Line , Cytokines/genetics , Cytokines/immunology , Diet, High-Fat/adverse effects , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/immunology , Energy Metabolism/drug effects , Humans , Hypothalamus/immunology , Male , Mice , Microglia/drug effects , Obesity/chemically induced , Obesity/complications
19.
Int J Mol Sci ; 20(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731705

ABSTRACT

Adiponectin, an adipokine derived from the adipose tissue, manifests anti-inflammatory effects in the metabolically active organs and is, therefore, beneficial in various metabolic diseases associated with inflammation. However, the role of adiponectin in alleviating the hypothalamic inflammation connected to the pathogenesis of obesity has not yet been clearly interrogated. Here, we identified that the systemic administration of adiponectin suppresses the activation of microglia and thereby reverses the hypothalamic inflammation during short-term exposure to a high-fat diet. Additionally, we show that adiponectin induces anti-inflammatory effects in the microglial cell line subjected to an exogenous treatment with a saturated free fatty acid. In conclusion, the current study suggests that adiponectin suppresses the saturated free fatty acid-triggered the hypothalamic inflammation by modulating the microglial activation and thus maintains energy homeostasis.


Subject(s)
Adiponectin/therapeutic use , Diet, High-Fat/adverse effects , Hypothalamus/metabolism , Inflammation/drug therapy , Microglia/metabolism , Adiponectin/pharmacology , Animals , Cell Line , Cells, Cultured , Hypothalamus/drug effects , Hypothalamus/immunology , Immunoblotting , Immunohistochemistry , Inflammation/etiology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/immunology , Real-Time Polymerase Chain Reaction
20.
Small ; 14(30): e1801732, 2018 07.
Article in English | MEDLINE | ID: mdl-29952144

ABSTRACT

Penetrating electronics have been used for treating epilepsy, yet their therapeutic effects are debated largely due to the lack of a large-scale, real-time, and safe recording/stimulation. Here, the proposed technology integrates ultrathin epidural electronics into an electrocorticography array, therein simultaneously sampling brain signals in a large area for diagnostic purposes and delivering electrical pulses for treatment. The system is empirically tested to record the ictal-like activities of the thalamocortical network in vitro and in vivo using the epidural electronics. Also, it is newly demonstrated that the electronics selectively diminish epileptiform activities, but not normal signal transduction, in live animals. It is proposed that this technology heralds a new generation of diagnostic and therapeutic brain-machine interfaces. Such an electronic system can be applicable for several brain diseases such as tinnitus, Parkinson's disease, Huntington's disease, depression, and schizophrenia.


Subject(s)
Electric Stimulation Therapy , Epilepsy/therapy , Animals , Electrodes , Epidural Space , Graphite/chemistry , Mice, Inbred C57BL , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...