Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(27): 19147-19153, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38882478

ABSTRACT

Precisely controlling the size and surface chemistry of polymeric nanoparticles (P-NPs) is critical for their versatile engineering and biomedical applications. In this work, various NPs of amphipathic random copolymers were comparatively produced by the flash nanoprecipitation (FNP) method using a tube-in-tube type of micro-mixer up to 330 mg min-1 in production scale in a kinetically controlled manner. The NPs obtained from poly(styrene-co-maleic acid), poly(styrene-co-allyl alcohol), and poly(methyl methacrylate-co-methacrylic acid) were concurrently controlled in the range 51-819 nm in size with narrow polydispersity index (<0.1) and -44 to -16 mV in zeta potential, by depending not only on the polymeric chemistry and the concentration but also the mixing behavior of good solvents (THF, alcohols) and anti-solvent (water) under three flow regimes (laminar, vortex and turbulence, turbulent jet). Moreover, the P(St-MA) derived NPs under turbulent jet flow conditions were post-treated in the initial solution mixture for up to 16 h, resulting in lowering of the zeta potential to -52 mV from the initial -27 mV and decreasing size to 46 nm from 50 nm by further migration of hydrophilic segments with -COOH groups on the outer surface, and the removal of THF trapped in the hydrophobic core.

2.
Adv Sci (Weinh) ; 9(35): e2204170, 2022 12.
Article in English | MEDLINE | ID: mdl-36285674

ABSTRACT

Recent studies have found that green hydrogen production and biomass utilization technologies can be combined to efficiently produce both hydrogen and value-added chemicals using biomass as an electron and proton source. However, the majority of them have been limited to proof-of-concept demonstrations based on batch systems. Here the authors report the design of modular flow systems for the continuous depolymerization and valorization of lignin and low-voltage hydrogen production. A redox-active phosphomolybdic acid is used as a catalyst to depolymerize lignin with the production of aromatic compounds and extraction of electrons for hydrogen production. Individual processes for lignin depolymerization, byproduct separation, and hydrogen production with catalyst reactivation are modularized and integrated to perform the entire process in the serial flow. Consequently, this work enabled a one-flow process from biomass conversion to hydrogen gas generation under a cyclic loop. In addition, the unique advantages of the fluidic system (i.e., effective mass and heat transfer) substantially improved the yield and efficiency, leading to hydrogen production at a higher current density (20.5 mA cm-2 ) at a lower voltage (1.5 V) without oxygen evolution. This sustainable eco-chemical platform envisages scalable co-production of valuable chemicals and green hydrogen for industrial purposes in an energy-saving and safe manner.


Subject(s)
Hydrogen , Lignin , Lignin/chemistry , Catalysis , Oxidation-Reduction , Hydrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...