Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1209: 339872, 2022 May 29.
Article in English | MEDLINE | ID: mdl-35569853

ABSTRACT

Here, nanocomposite-decorated laser-induced graphene-based flexible hybrid sensor is newly developed for simultaneous detection of heavy metals, pesticides, and pH in freshwater. A series of deposition methods such as drop-casting, electroplating, and heating are adopted to modify and functionalize laser-induced graphene for engineering the high-performance detection at the individual sensor. A micro-dendritic structured bismuth@tin alloy inlaid on laser-induced graphene is prepared via a simple ex-situ electrodeposition method and thermal treatment for detecting heavy metals. The electrochemical performance is evaluated through the simultaneous determination of lead and cadmium ions at the optimized deposition potential of -1.2 V for 170 s, and a wide detection concentration range of 2-250 ppb and low detection limits (1.6 ppb and 0.9 ppb, respectively) are achieved. The pesticide sensor co-modified by zirconia nanoparticles and multilayered Ti3C2Tx-MXene is successfully implemented with a good linear performance for parathion after an optimal accumulation time of 120s. It realizes a low detection concentration range (0.1-5 ppb) with a detection limit of 0.06 ppb. Furthermore, a polyaniline/antimony/laser-induced graphene-based pH sensor is also integrated, showing an excellent sensitivity of -72.08 mV pH-1 in the pH range (2-9). They are also measured and characterized in different real water samples, exhibiting an acceptable detection performance, which provides promising applicability in the on-site monitoring of pollutants in the water environment.


Subject(s)
Graphite , Nanocomposites , Electrochemical Techniques/methods , Graphite/chemistry , Lasers , Nanocomposites/chemistry , Water
2.
Biosens Bioelectron ; 169: 112637, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33007617

ABSTRACT

Three-dimensional (3D) porous laser-guided graphene (LGG) electrodes on elastomeric substrates are of great significance for developing flexible functional electronics. However, the high sheet resistance and poor mechanical properties of LGG sheets obstruct their full exploitation as electrode materials. Herein, we applied 2D MXene nanosheets to functionalize 3D LGG sheets via a C-O-Ti covalent crosslink to obtain an LGG-MXene hybrid scaffold exhibited high conductivity and improved electrochemistry with fast heterogeneous electron transfer (HET) rate due to the synergistic effect between LGG and MXene. Then we transferred the obtained hybrid scaffold onto PDMS to engineer a smart, flexible, and stretchable multifunctional sensors-integrated wound bandage capable of assessing uric acid (UA), pH, and temperature at the wound site. The integrated UA sensor exhibited a rapid response toward UA in an extended wide range of 50-1200 µM with a high sensitivity of 422.5 µA mM-1 cm-2 and an ultralow detection limit of 50 µM. Additionally, the pH sensor demonstrated a linear Nernstian response (R2 = 0.998) with a high sensitivity of -57.03 mV pH-1 in the wound relevant pH range of 4-9. The temperature sensor exhibited a fast and stable linear resistive response to the temperature variations in the physiological range of 25-50 °C with an excellent sensitivity and correlation coefficient of 0.09% °C-1 and 0.999, respectively. We anticipate that this stretchable and flexible smart bandage could revolutionize wound care management and have profound impacts on the therapeutic outcomes.


Subject(s)
Biosensing Techniques , Graphite , Bandages , Electrodes , Porosity
3.
J Peripher Nerv Syst ; 16(2): 143-6, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21692914

ABSTRACT

Various phenotypes have been reported in Charcot-Marie-Tooth (CMT) disease carrying mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene. Here, we report two recessive intermediate Charcot-Marie-Tooth (RI-CMT) patients with GDAP1 missense mutations: a His256Arg homozygous mutation (c.767A>G + c.767A>G) and compound mutations of heterozygous Pro111His (c.332C>A) and Val219Gly (c.656T>G). The Pro111His and Val219Gly are unreported mutations, but the His256Arg was previously reported. In both patients, histopathological findings showed well-documented features of mixed demyelinating and axonal neuropathies, and nerve conduction velocities fall in the intermediate range. In addition, the patterns of fatty substitutions in leg magnetic resonance imaging (MRI) were different by the mutation sites within the same GDAP1 gene.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Mutation, Missense , Nerve Tissue Proteins/genetics , Charcot-Marie-Tooth Disease/physiopathology , Child , Child, Preschool , DNA Mutational Analysis , Female , Genes, Recessive , Humans , Male , Point Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...