Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 46(6): 5551-5560, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38921003

ABSTRACT

Extensive research on medicinal herbs for bioactive compounds proposes that they could replace synthetic drugs, reducing side effects and economic burdens. Especially, interest in the synergistic benefits of natural products is increasing, implying that their combined use may enhance therapeutic effectiveness. This study aimed to explore the synergetic effects of turmeric (Curcuma longa L.) and black pepper (Piper nigrum L.) extract on lung normal (MRC-5) and cancer (A549 and NCI-H292) cell lines. The turmeric extract (TM) only affected the lung cancer cell lines, but it had no impact on the MRC-5 cell line. On the other hand, the black pepper extract (BP) did not cause any damage to either the lung normal or cancer cell lines, even at concentrations of up to 400 µg/mL. Response surface methodology was used to predict the ideal synergistic concentrations (EC50) of TM and BP, which were found to be 48.5 and 241.7 µg/mL, respectively. Notably, the selected condition resulted in higher cytotoxicity compared to the exposure to TM alone, indicating a potent synergetic effect. The rate of curcumin degradation under this combined treatment was significantly decreased to 49.72 ± 5.00 nmol/h/µg for A549 cells and 47.53 ± 4.78 nmol/h/µg for NCI-H292 cells, respectively, as compared to curcumin alone. Taken together, this study confirmed the potent synergistic effect of TM and BP on lung cancer cell lines. Further research is required to identify their specific synergetic mechanisms. Our findings provide crucial foundational data on the synergistic effects of TM and BP.

2.
Toxicol In Vitro ; 98: 105838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710238

ABSTRACT

Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Molecular Docking Simulation , Phenols , Receptors, Androgen , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Receptors, Androgen/metabolism , Receptors, Androgen/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Humans , Computer Simulation , Sulfones/toxicity , Sulfones/chemistry , Androgens/chemistry
3.
Front Biosci (Landmark Ed) ; 28(3): 48, 2023 03 13.
Article in English | MEDLINE | ID: mdl-37005763

ABSTRACT

BACKGROUND: Disinfection byproducts (DBPs) cause endocrine disruption via estrogenic or anti-estrogenic effects on estrogen receptors. However, most studies have focused on human systems, with little experimental data being presented on aquatic biota. This study aimed to compare the effects of nine DBPs on zebrafish and human estrogen receptor alpha (zERα and hERα). METHODS: In vitro enzyme response-based tests, including cytotoxicity and reporter gene assays, were performed. Additionally, statistical analysis and molecular docking studies were employed to compare ERα responses. RESULTS: Iodoacetic acid (IAA), chloroacetonitrile (CAN), and bromoacetonitrile (BAN) showed robust estrogenic activity on hERα(maximal induction ratios of 108.7%, 50.3%, and 54.7%, respectively), while IAA strongly inhibited the estrogenic activity induced by 17ß-estradiol (E2) in zERα (59.8% induction at the maximum concentration). Chloroacetamide (CAM) and bromoacetamide (BAM) also showed robust anti-estrogen effects in zERα (48.1% and 50.8% induction at the maximum concentration, respectively). These dissimilar endocrine disruption patterns were thoroughly assessed using Pearson correlation and distance-based analyses. Clear differences between the estrogenic responses of the two ERαs were observed, whereas no pattern of anti-estrogenic activities could be established. Some DBPs strongly induced estrogenic endocrine disruption as agonists of hERα, while others inhibited estrogenic activity as antagonists of zERα. Principal coordinate analysis (PCoA) showed similar correlation coefficients for estrogenic and anti-estrogenic responses. Reproducible results were obtained from computational analysis and the reporter gene assay. CONCLUSIONS: Overall, the effects of DBPs on both human and zebrafish highlight the importance of controlling their differences in responsiveness for estrogenic activities including the water quality monitoring and endocrine disruption, as DBPs have species-specific ligand-receptor interactions.


Subject(s)
Estrogen Receptor alpha , Zebrafish , Animals , Humans , Estrogen Receptor alpha/genetics , Disinfection , Molecular Docking Simulation , Estrogens/pharmacology , Receptors, Estrogen/genetics
4.
ACS Appl Mater Interfaces ; 14(35): 39759-39774, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36006894

ABSTRACT

Although metal ions, such as silver and gold, have been shown to have strong antimicrobial properties, their potential to have toxic effects on human and environmental health has gained interest with an improved understanding of their mechanisms to promote oxidative stress. Redox control is a major focus of many drug delivery systems and often incorporates an antioxidant as the active pharmaceutical ingredient (API) to neutralize overproduced reactive oxygen species (ROS). Nevertheless, there are still limitations with bioavailability and extended redox control with regard to antioxidant drug delivery. Herein, this study develops a colloidal antioxidant crystal system that dissolves sustainably through polymer stabilization using sodium hyaluronate conjugated with dopamine (HA-dopa). We explore the role of dopamine incorporation into crystal-stabilizing polymers and quantify the balance between drug-polymer interactions and competing polymer-polymer interactions. We propose that this type of analysis is useful in the engineering of and provides insight into the release behavior of polymer-crystal complexes. In developing our crystal complex, N-acetylcysteine (NAC) was used as the model antioxidant to protect against silver ion toxicity. We found that our optimized HA-dopa-stabilized NAC crystals prolong the release time of NAC 5-fold compared to a polymer-free NAC crystal. Therefore, following sublethal exposure to AgNO3, the extended lifetime of NAC was able to maintain normal intracellular ROS levels, modulate metabolic function, mitigate fluctuations in ATP levels and ATP synthase activity, and preserve contraction frequency in engineered cardiac muscle tissue. Furthermore, the protective effects of the HA-dopa-stabilized NAC crystals were extended to a Daphnia magna model where silver-ion-induced change to both cell-level biochemistry and organ function was alleviated. As such, we propose that the packaging of hydrophilic antioxidants as colloidal crystals drastically extends the lifetime of the API, better maintains ROS homeostasis post metal ion exposure, and therefore preserves both intracellular biochemistry and tissue functionality.


Subject(s)
Antioxidants , Dopamine , Acetylcysteine , Adenosine Triphosphate/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Biological Availability , Crystallization , Dihydroxyphenylalanine , Dopamine/pharmacology , Humans , Ions , Oxidative Stress , Polysaccharides/pharmacology , Reactive Oxygen Species/metabolism , Silver/toxicity
5.
Environ Toxicol Chem ; 41(10): 2431-2443, 2022 10.
Article in English | MEDLINE | ID: mdl-35876442

ABSTRACT

Adverse impacts associated with the interactions of numerous endocrine-disruptor chemicals (EDCs) with estrogen receptor 1 play a pivotal role in reproductive dysfunction. The predictive studies on these interactions thus are crucial in the risk assessment of EDCs but rely heavily on the accuracy of specific protein structure in three dimensions. As the three-dimensional (3D) structure of zebrafish estrogen receptor 1 (zEsr1) is not available, the 3D structure of zEsr1 ligand-binding domain (zEsr1-LBD) was generated using MODELLER and its quality was assessed by the PROCHECK, ERRAT, ProSA, and Verify-3D tools. After the generated model was verified as reliable, bisphenol A and its analogs were docked on the zEsr1-LBD and human estrogen receptor 1 ligand-binding domain (hESR1-LBD) using the Discovery Studio and Autodock Vina programs. The molecular dynamics followed by molecular docking were simulated using the Nanoscale Molecular Dynamics program and compared to those of the in vitro reporter gene assays. Some chemicals were bound with an orientation similar to that of 17ß-estradiol in both models and in silico binding energies showed moderate or high correlations with in vitro results (0.33 ≤ r2 ≤ 0.71). Notably, hydrogen bond occupancy during molecular dynamics simulations exhibited a high correlation with in vitro results (r2 ≥ 0.81) in both complexes. These results show that the combined in silico and in vitro approaches is a valuable tool for identifying EDCs in different species, facilitating the assessment of EDC-induced reproductive toxicity. Environ Toxicol Chem 2022;41:2431-2443. © 2022 SETAC.


Subject(s)
Endocrine Disruptors , Estrogen Receptor alpha , Animals , Benzhydryl Compounds , Endocrine Disruptors/chemistry , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Genes, Reporter , Humans , Ligands , Molecular Docking Simulation , Phenols , Species Specificity , Zebrafish/metabolism
6.
Small ; 18(22): e2200757, 2022 06.
Article in English | MEDLINE | ID: mdl-35521748

ABSTRACT

Numerous methods have been introduced to produce 3D cell cultures that can reduce the need for animal experimentation. This study presents a unique 3D culture platform that features bioinspired strands of electrospun nanofibers (BSeNs) and aquatic cell lines to compensate for shortcomings in the current cell spheroid generation techniques. The use of BSeNs in 3D zebrafish liver cell cultures is found to improve liver and reproductive functions through spheroid-based in vitro assays such as whole transcriptome sequencing and reproductive toxicity testing, with optimized properties exhibiting results similar to those obtained for fish embryo acute toxicity (FET, OECD TG 236) following exposure to environmental endocrine-disrupting chemicals (17ß-Estradiol (E2), 4-hydroxytamoxifen (4-HT), and bisphenol compounds (bisphenol A (BPA) and 9,9-Bis(4-hydroxyphenyl)fluorene (BPFL)). These findings indicate that the beneficial effects of bioinspired materials that closely mimic ECM environments can yield efficient zebrafish cells with intrinsic functions and xenobiotic metabolism similar to those of zebrafish embryos. As a closer analog for the in vivo conditions that are associated with exposure to potentially hazardous chemicals, the straightforward culture model introduced in this study shows promise as an alternative tool that can be used to further eco-environmental assessment.


Subject(s)
Endocrine Disruptors , Zebrafish , Animals , Endocrine Disruptors/metabolism , Endocrine Disruptors/toxicity , Liver/metabolism , Spheroids, Cellular/metabolism , Toxicity Tests , Zebrafish/metabolism
7.
Aquat Toxicol ; 245: 106105, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151072

ABSTRACT

In recent decades, extensive efforts have focused on developing in vitro platforms mimicking fish livers to better understand the acute or chronic effects of toxicants on lower aquatic vertebrates. Fish liver cell lines have emerged as a promising culture system for these in vitro platforms because they complement the currently limited in vitro tools that mostly consist of mammalian cell lines and adhere to the 3Rs: replacement, reduction, and refinement of living animal tests. However, monolayer cell lines have lower transcriptional and physiological responses upon exposure to toxic chemicals than freshly isolated primary cells. To overcome this challenge, we utilized a three-dimensional (3D) spheroid-based in vitro platform, in which hepatocyte cells had self-organized into spheroid forms via E-cadherin bonds. This platform exhibited augmented transcriptomic and phenotypic regulation of liver cells in comparison to monolayer cells. We examined the organoid platform using the zebrafish liver (ZFL) cell line as a model system. ZFL cells spontaneously clustered into 3D spheroids with long-term viability by optimizing cell seeding density on a non-adherent substrate. Interestingly, 3D ZFL spheroids treated with estrogenic chemicals were activated to synthesize a higher level of vitellogenin (Vtg) than monolayer cells. Whole-transcriptome sequencing analysis confirmed that 3D ZFL spheroids had greater transcriptional regulation of genes related to reproductive toxicological response and liver functions, such as the urea cycle, estrogen receptors, and vitellogenin, compared to monolayer cells. These results may contribute to the engineering of novel 3D in vitro platforms for screening harmful chemicals and improving understanding of the underlying liver toxicity mechanisms at the molecular and cellular levels.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Cell Culture Techniques/methods , Endocrine Disruptors/metabolism , Endocrine Disruptors/toxicity , Hepatocytes , Liver , Mammals , Transcriptome , Water Pollutants, Chemical/toxicity , Zebrafish
8.
Sci Total Environ ; 761: 143316, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33190885

ABSTRACT

Haloacetonitriles are emerging disinfection by-products that can be detected in various aquatic environments. They are cytotoxic, genotoxic, mutagenic, and tumorigenic in vitro and in vivo, but their endocrine-disrupting potency remains unknown. In this study, we examined the agonistic and antagonistic estrogenic and androgenic activities of haloacetonitriles, as well as their cytotoxicity, using a yeast-based reporter assay. We also investigated the interactions of haloacetonitriles with human estrogen receptor alpha (hERα) through molecular docking. We observed that iodoacetonitrile (median lethal dose: 1.96 × 10-5 M) and bromoacetonitrile (median lethal dose: 1.97 × 10-5 M) had similar cytotoxicities, which are higher than that of chloroacetonitrile (median lethal dose: 7.16 × 10-5 M). We observed bromoacetonitrile and chloroacetonitrile elicited estrogenic activity with 10% effective concentrations of 3.30 × 10-9 M and 2.36 × 10-9 M, respectively. This finding indicates that bromoacetonitrile and chloroacetonitrile may mimic estrogen signaling through interaction with hERα. Consistent with that result, we identified bromoacetonitrile and chloroacetonitrile interacted with residues in the original estrogen recognition sites of hERα. Our results show that bromoacetonitrile and chloroacetonitrile affect the endocrine-disrupting potency mediated via estrogen receptors by using in vitro assay and molecular docking.


Subject(s)
Endocrine Disruptors , Androgens , Endocrine Disruptors/toxicity , Estrogen Receptor alpha , Estrogens , Humans , Molecular Docking Simulation , Receptors, Estrogen
9.
Environ Sci Technol ; 54(21): 13797-13806, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32975940

ABSTRACT

Endocrine disrupting chemicals (EDC) include synthetic compounds that mimic the structure or function of natural hormones. While most studies utilize live embryos or primary cells from adult fish, these cells rapidly lose functionality when cultured on plastic or glass substrates coated with extracellular matrix proteins. This study hypothesizes that the softness of a matrix with adhered fish cells can regulate the intercellular organization and physiological function of engineered hepatoids during EDC exposure. We scrutinized this hypothesis by culturing zebrafish hepatocytes (ZF-L) on collagen-based hydrogels with controlled elastic moduli by examining morphology, urea production, and intracellular oxidative stress of hepatoids exposed to 17ß-estradiol. Interestingly, the softer gel drove cells to form a cell sheet with a canaliculi-like structure compared to its stiffer gel counterpart. The hepatoids cultured on the softer gel exhibited more active urea production upon exposure to 17ß-estradiol and displayed faster recovery of intracellular reactive oxygen species level confirmed by gradient light interference microscopy (GLIM), a live-cell imaging technique. These results are broadly useful to improve screening and understanding of potential EDC impacts on aquatic organisms and human health.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Endocrine Disruptors/toxicity , Estradiol/pharmacology , Hepatocytes , Humans , Reactive Oxygen Species/pharmacology , Water Pollutants, Chemical/pharmacology , Zebrafish
10.
Environ Pollut ; 265(Pt B): 114362, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32806436

ABSTRACT

This study aimed to investigate the effect of mono-(2-ethylhexyl) phthalate (MEHP), one of the major phthalate metabolites that are widespread in aquatic environments, on reproductive dysfunction, particularly on endocrine activity in adult male and female zebrafish. For 21 days, the zebrafish were exposed to test concentrations of MEHP (0, 2, 10, and 50 µg/mL) that were determined based on the effective concentrations (ECx) for zebrafish embryos. Exposure to 50 µg/mL MEHP in female zebrafish significantly decreased the number of ovulated eggs as well as the hepatic VTG mRNA abundance when those of the control group. Meanwhile, in female zebrafish, the biosynthetic concentrations of 17ß-estradiol (E2) and the metabolic ratio of androgen to estrogen were remarkably increased in all MEHP exposed group compared with those in the control group, along with the elevated levels of cortisol. However, no significant difference was observed between these parameters in male zebrafishes. Therefore, exposure to MEHP causes reproductive dysfunction in female zebrafishes and this phenomenon can be attributed to the alteration in endocrine activities. Moreover, the reproductive dysfunction in MEHP-exposed female zebrafishes may be closely associated with stress responses, such as elevated cortisol levels. To further understand the effect of MEHP on the reproductive activities of fish, follow-up studies are required to determine the interactions between endocrine activities and stress responses. Overall, this study provides a response biomarker for assessing reproductive toxicity of endocrine disruptors that can serve as a methodological approach for an alternative to chronic toxicity testing.


Subject(s)
Phthalic Acids , Zebrafish , Animals , Connexins , Diethylhexyl Phthalate/analogs & derivatives , Endocrine System , Female , Male , Zebrafish Proteins
11.
Article in English | MEDLINE | ID: mdl-31927120

ABSTRACT

The purpose of the present study was to examine the antioxidant and oxidative stress changes in zebrafish liver (ZFL) cells in the presence of mono-(2-ethylhexyl) phthalate (MEHP). When reactive oxygen species (ROS) and antioxidant levels were measured by immunoassay, significant differences were observed between MEHP-treated and control cells, while catalase levels did not change in any group. MEHP-treated cells had higher levels of ROS, glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione, and superoxide dismutase (SOD) than control cells. However, lower levels of lipid peroxidation were observed in MEHP-treated cells compared to control cells. After 24 h of MEHP treatment, ROS, SOD, GPx, and GST activity increased in a dose-dependent manner. Cellular lipid droplet formation and endoplasmic reticulum stress were both induced in the presence of MEHP. These findings demonstrated the potential impacts of the association of MEHP with adverse outcomes in fish liver. Future studies will focus on clarifying the molecular mechanism of phthalate toxicity via oxidative stress and peroxisome proliferator activated receptor as the major mechanistic pathway.


Subject(s)
Diethylhexyl Phthalate/analogs & derivatives , Endoplasmic Reticulum Stress , Hepatocytes/metabolism , Lipid Droplets/metabolism , Liver/metabolism , Oxidative Stress , Zebrafish/metabolism , Animals , Cells, Cultured , Diethylhexyl Phthalate/toxicity , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Hepatocytes/cytology , Liver/cytology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
12.
Chemosphere ; 242: 125198, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31689635

ABSTRACT

Exposure to disinfection byproducts (DBPs) is potentially related to cytotoxic, genotoxic, mutagenic, and tumorigenic effects in humans, in addition to their adverse effects on the environment. However, their impacts on endocrine disruption, especially reproductive toxicity, remain largely unknown. In this study, the estrogenic and androgenic activities of DBPs and corresponding antagonistic activities were investigated using a yeast-based reporter assay, focusing on haloacetic acids and haloacetamides. We also examined the cytotoxicity of DBPs and mechanisms of antagonistic activities. Of the DBPs assayed, iodoacetamide (IAM) and bromoacetamide (BAM) were the most cytotoxic, with LC50 values of 0.0462 and 0.0537 mM, respectively, followed by chloroacetic acid (CAA; LC50 = 4.87 mM) and chloroacetamide (CAM; LC50 = 5.28 mM). Iodoacetic acid (IAA) and bromoacetic acid (BAA) were the least cytotoxic, with LC50 values of 5.52 and 6.35 mM, respectively. IAA (EC10 = 0.00573 mM; EC50 = 0.0215 mM) exhibited most potent estrogenic activity, and CAA (EC10 = 0.0434 mM) and BAM (EC10 = 0.0150 mM) showed weak estrogenic and androgenic activities, respectively. By contrast, IAM exhibited anti-estrogenic effects. These results suggest that DBPs interact with hormone receptors.


Subject(s)
Acetamides/toxicity , Acetates/toxicity , Androgens/pharmacology , Disinfectants/pharmacology , Estrogens/pharmacology , Water Pollutants, Chemical , Biological Assay , Disinfectants/toxicity , Disinfection/methods , Endocrine Disruptors/pharmacology , Humans , Receptors, Steroid/drug effects , Water Pollutants, Chemical/toxicity
13.
Small ; 15(21): e1900765, 2019 05.
Article in English | MEDLINE | ID: mdl-30950171

ABSTRACT

Various antioxidants are being used to neutralize the harmful effects of reactive oxygen species (ROS) overproduced in diseased tissues and contaminated environments. Polymer-directed crystallization of antioxidants has attracted attention as a way to control drug efficacy through molecular dissolution. However, most recrystallized antioxidants undertake continuous dissolution independent of the ROS level, thus causing side-effects. This study demonstrates a unique method to assemble antioxidant crystals that modulate their dissolution rate in response to the ROS level. We hypothesized that antioxidants recrystallized using a ROS-labile polymer would be triggered to dissolve when the ROS level increases. We examined this hypothesis by using catechin as a model antioxidant. Catechin was recrystallized using polyethylenimine cross-linked with ROS-labile diselanediylbis-(ethane-2,1-diyl)-diacrylate. Catechin crystallized with the ROS-labile polymer displays accelerated dissolution proportional to the H2 O2 concentration. The ROS-responsive catechin crystals protect vascular cells from oxidative insults by activating intracellular glutathione peroxidase expression and, in turn, inhibiting an increase in the intracellular oxidative stress. In addition, ROS-responsive catechin crystals alleviate changes in the heart rate of Daphnia magna in oxidative media. We propose that the results of this study would be broadly useful for improving the therapeutic efficacy of a broad array of drug compounds.


Subject(s)
Catechin/chemistry , Catechin/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Daphnia , Heart Rate/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
14.
Molecules ; 24(8)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010227

ABSTRACT

Endocrine active compounds with structural similarities to natural hormones such as 17ß-estradiol (E2) and androgen are suspected to affect the human endocrine system by inducing hormone-dependent effects. This study aimed to detect the (anti-)estrogenic and (anti-)androgenic activities of mono-(2-ethylhexyl) phthalate (MEHP) by yeast estrogen/androgen bioassay (YES/YAS). In addition, the mechanism and uptake of MEHP to receptors during agonistic and antagonistic activities were investigated through the activation signal recovery test and chromatographic analysis using liquid chromatography and tandem mass spectrometry (LC-MS/MS). Estrogenic and androgenic activities of MEHP were not observed. However, MEHP exhibited anti-estrogenic (IC50 = 125 µM) and anti-androgenic effects (IC50 = 736 µM). It was confirmed that these inhibitory effects of MEHP were caused by receptor-mediated activity of the estrogen receptor and non-receptor-mediated activity of the androgen receptor in an activation signal recovery test. When IC50 concentrations of anti-estrogenic and androgenic activity of MEHP were exposed to yeast cells, the uptake concentration observed was 0.0562 ± 0.0252 µM and 0.143 ± 0.0486 µM by LC-MS/MS analysis.


Subject(s)
Biological Assay/methods , Diethylhexyl Phthalate/analogs & derivatives , Endocrine Disruptors/pharmacology , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Cell Survival/drug effects , Chromatography, Liquid , Confidence Intervals , Diethylhexyl Phthalate/pharmacology , Female , Humans , Receptors, Androgen/genetics , Receptors, Estrogen/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Tandem Mass Spectrometry
15.
Environ Toxicol Pharmacol ; 64: 187-195, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30448727

ABSTRACT

Herein, the toxicity of particles generated from the complete combustion of 1 g coal at 500, 700, and 900 °C were compared, and combustion at 700 °C generated the most toxins. Chemical analyses revealed that all components except catechol, resorcinol, and aromatic amines were most abundant at 700 °C. Toxicity results confirmed that the relative mutagenicity, cytotoxicity, redox cycling, and production of reactive oxygen species was highest for particles generated at 700 °C. Particles generated during combustion at 700 °C exhibited higher toxicity toward biological systems due to a higher content of toxic compounds.


Subject(s)
Air Pollutants/toxicity , Coal , Mutagens/toxicity , Particulate Matter/toxicity , A549 Cells , Amines/toxicity , Cell Survival/drug effects , Humans , Hydrocarbons, Aromatic/toxicity , Power Plants , Reactive Oxygen Species/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Temperature
16.
Toxicol Res ; 34(2): 163-172, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29686778

ABSTRACT

Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.

17.
Toxicol Ind Health ; 34(2): 99-109, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29415641

ABSTRACT

Ultrafine particles (UFPs, < 2.5 µm) in air pollutants have been identified as a major cause of respiratory diseases, since they can affect the lung alveoli through the bronchus. In particular, if toxicants such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) are present in UFPs, they can cause diseases such as asthma, chronic obstructive pulmonary disease, and lung cancer. This study compared in vitro toxicity of various particulate matter including UFPs from combustion particles of diesel (diesel exhaust particles (DEP)), rice straw (RS), pine stem (PS) and coal (CC), and road dust particles from tunnel (TD) and roadside (RD). UFPs from combustion particles and road dust were collected with a glass fiber filter using burning systems and a solid aerosol generator. Cell viability was determined by neutral red uptake assay using Chinese hamster ovary strain K1 cells. Redox cycling activity and intracellular reactive oxygen species were measured using 1,4-dithiothreitol (DTT) and 2',7'-dichlorofluorescin diacetate (DCF-DA) assay, respectively. Our in vitro studies validated that combustion particles had high toxicological activity. PS demonstrated the highest activity in cytotoxicity but DEP had the highest activity in the DTT and DCF-DA assays. Overall, since the toxicological activity of particles generated by various means was different, risk assessment should be conducted through various toxicity evaluations rather than one toxicity evaluation.


Subject(s)
Air Pollutants/toxicity , Oxidative Stress/drug effects , Particulate Matter/toxicity , Respiratory Mucosa/drug effects , A549 Cells , Air Pollutants/chemistry , Animals , CHO Cells , Cell Survival/drug effects , Coal/toxicity , Cricetulus , Dust , Fires , Gasoline/toxicity , Humans , Lethal Dose 50 , Oryza/chemistry , Oxidation-Reduction , Particle Size , Particulate Matter/chemistry , Pinus/chemistry , Plant Stems/chemistry , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , Respiratory Mucosa/metabolism , Vehicle Emissions/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...