Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
ACS Cent Sci ; 10(3): 603-614, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38559301

ABSTRACT

Anion exchange membrane (AEM) fuel cells (AEMFCs) and water electrolyzers (AEMWEs) suffer from insufficient performance and durability compared with commercialized energy conversion systems. Great efforts have been devoted to designing high-quality AEMs and catalysts. However, the significance of the stability of the catalyst layer has been largely disregarded. Here, an in situ cross-linking strategy was developed to promote the interactions within the catalyst layer and the interactions between catalyst layer and AEM. The adhesion strength of the catalyst layer after cross-linking was improved 7 times compared with the uncross-linked catalyst layer due to the formation of covalent bonds between the catalyst layer and AEM. The AEMFC can be operated under 0.6 A cm-2 for 1000 h with a voltage decay rate of 20 µV h-1. The related AEMWE achieved an unprecedented current density of 15.17 A cm-2 at 2.0 V and was operated at 0.5, 1.0, and 1.5 A cm-2 for 1000 h.

2.
Angew Chem Int Ed Engl ; 63(3): e202316697, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38063325

ABSTRACT

Alkaline polymer electrolytes (APEs) are essential materials for alkaline energy conversion devices such as anion exchange membrane fuel cells (AEMFCs) and water electrolyzers (AEMWEs). Here, we report a series of branched poly(aryl-co-aryl piperidinium) with different branching agents (triptycene: highly-rigid, three-dimensional structure; triphenylbenzene: planar, two-dimensional structure) for high-performance APEs. Among them, triptycene branched APEs showed excellent hydroxide conductivity (193.5 mS cm-1 @80 °C), alkaline stability, mechanical properties, and dimensional stability due to the formation of branched network structures, and increased free volume. AEMFCs based on triptycene-branched APEs reached promising peak power densities of 2.503 and 1.705 W cm-2 at 75/100 % and 30/30 % (anode/cathode) relative humidity, respectively. In addition, the fuel cells can run stably at a current density of 0.6 A cm-2 for 500 h with a low voltage decay rate of 46 µV h-1 . Importantly, the related AEMWE achieved unprecedented current densities of 16 A cm-2 and 14.17 A cm-2 (@2 V, 80 °C, 1 M NaOH) using precious and non-precious metal catalysts, respectively. Moreover, the AEMWE can be stably operated under 1.5 A cm-2 at 60 °C for 2000 h. The excellent results suggest that the triptycene-branched APEs are promising candidates for future AEMFC and AEMWE applications.

3.
Adv Sci (Weinh) ; 11(5): e2306988, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044283

ABSTRACT

The rational design of the current anion exchange polyelectrolytes (AEPs) is challenging to meet the requirements of both high performance and durability in anion exchange membrane water electrolyzers (AEMWEs). Herein, highly-rigid-twisted spirobisindane monomer is incorporated in poly(aryl-co-aryl piperidinium) backbone to construct continuous ionic channels and to maintain dimensional stability as promising materials for AEPs. The morphologies, physical, and electrochemical properties of the AEPs are investigated based on experimental data and molecular dynamics simulations. The present AEPs possess high free volumes, excellent dimensional stability, hydroxide conductivity (208.1 mS cm-1 at 80 °C), and mechanical properties. The AEMWE of the present AEPs achieves a new current density record of 13.39 and 10.7 A cm-2 at 80 °C by applying IrO2 and nonprecious anode catalyst, respectively, along with outstanding in situ durability under 1 A cm-2 for 1000 h with a low voltage decay rate of 53 µV h-1 . Moreover, the AEPs can be applied in fuel cells and reach a power density of 2.02 W cm-2 at 80 °C under fully humidified conditions, and 1.65 W cm-2 at 100 °C, 30% relative humidity. This study provides insights into the design of high-performance AEPs for energy conversion devices.

4.
Anticancer Res ; 43(9): 3897-3904, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648291

ABSTRACT

BACKGROUND/AIM: To obtain sufficient numbers of high-quality natural killer (NK) cells, we developed feeder cells using synthetic biology techniques. MATERIALS AND METHODS: K562 cells were engineered to express membrane bound interleukin-2 (mbIL2) or interleukin-13 (mbIL13). RESULTS: The incubation of human primary NK cells isolated from peripheral blood mononuclear cells (PBMCs) with these feeder cells significantly increased the number of activated NK cells compared to K562 parental cells. Fluorescence-activated cell sorting (FACS) analysis demonstrated that NKG2D activating receptors were abundant on the surface of NK cells expanded by K562-mbIL2 or mbIL13 cells. NK cells expanded on K562-mbIL2 or mbIL13 lysed cancer cells more effectively than those cultured with normal K562 cells. Using NK cells incubated with our feeder cells, we developed anti-CD19 chimeric antigen receptor (CAR)-NK cells. They showed robust cytotoxic effect against CD19 positive cancer cell line. CONCLUSION: Our newly developed feeder cells could provide useful tools for NK cell therapy.


Subject(s)
Killer Cells, Natural , Leukocytes, Mononuclear , Humans , Feeder Cells , Cell Proliferation , K562 Cells
5.
Sci Rep ; 13(1): 10805, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402749

ABSTRACT

BRD4 contains two tandem bromodomains (BD1 and BD2) that recognize acetylated lysine for epigenetic reading, and these bromodomains are promising therapeutic targets for treating various diseases, including cancers. BRD4 is a well-studied target, and many chemical scaffolds for inhibitors have been developed. Research on the development of BRD4 inhibitors against various diseases is actively being conducted. Herein, we propose a series of [1,2,4]triazolo[4,3-b]pyridazine derivatives as bromodomain inhibitors with micromolar IC50 values. We characterized the binding modes by determining the crystal structures of BD1 in complex with four selected inhibitors. Compounds containing [1,2,4] triazolo[4,3-b]pyridazine derivatives offer promising starting molecules for designing potent BRD4 BD inhibitors.


Subject(s)
Nuclear Proteins , Transcription Factors , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins/metabolism , Protein Domains , Structure-Activity Relationship
6.
Sci Rep ; 13(1): 12365, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524755

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising modality for anti-cancer treatment. Its efficacy is quite remarkable in hematological tumors. Owing to their excellent clinical results, gene- modified cell therapies, including T cells, natural killer (NK) cells, and macrophages, are being actively studied in both academia and industry. However, the protocol to make CAR immune cells is too complicated, so it is still unclear how to efficiently produce the potent CAR immune cells. To manufacture effective CAR immune cells, we need to be aware of not only how to obtain highly infective viral particles, but also how to transduce CAR genes into immune cells. In this paper, we provide detailed information on spinoculation, which is one of the best known protocols to transduce genes into immune cells, in a methodological view. Our data indicate that gene transduction is significantly dependent on speed and duration of centrifugation, concentration and number of viral particles, the concentration of polybrene, and number of infected immune cells. In addition, we investigated on the optimal polyethylene glycol (PEG) solution to concentrate the viral supernatant and the optimized DNA ratios transfected into 293T cells to produce high titer of viral particles. This study provides useful information for practical production of the gene-modified immune cells using viral vectors.


Subject(s)
Genetic Vectors , Neoplasms , Humans , Transduction, Genetic , Genetic Vectors/genetics , Killer Cells, Natural , T-Lymphocytes , Immunotherapy, Adoptive/methods
7.
Anticancer Res ; 43(8): 3419-3427, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37500142

ABSTRACT

BACKGROUND/AIM: Several chimeric antigen receptor (CAR) T cells have been used to treat melanoma but have not shown favorable results. This study investigated whether Herpes virus entry mediator (HVEM), which is overexpressed in melanoma, is a potential novel antigen for CAR T cell therapy. MATERIALS AND METHODS: A CAR construct, composed of the BTLA extracellular domain for HVEM recognition (BTLA-28z), was developed and tested. RESULTS: Jurkat cells transduced with BTLA-28z exhibited enhanced IL-2 secretion when incubated with HVEM-over-expressing melanoma cells. KHYG-1 cells transduced with BTLA-28z also lysed melanoma cell lines. Using primary T cells, we generated CAR T cells targeting HVEM. BTLA-28z CAR T cells exhibited excellent lytic activities against melanoma cell lines. CONCLUSION: HVEM-targeting CAR T cells may be useful for the treatment of melanoma.


Subject(s)
Immunotherapy, Adoptive , Melanoma , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Humans , Cell Line , Melanoma/therapy , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/genetics , Receptors, Tumor Necrosis Factor, Member 14/metabolism
8.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108799

ABSTRACT

Due to increased environmental pressures, significant research has focused on finding suitable biodegradable plastics to replace ubiquitous petrochemical-derived polymers. Polyhydroxyalkanoates (PHAs) are a class of polymers that can be synthesized by microorganisms and are biodegradable, making them suitable candidates. The present study looks at the degradation properties of two PHA polymers: polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-polyhydroxyvalerate (PHBV; 8 wt.% valerate), in two different soil conditions: soil fully saturated with water (100% relative humidity, RH) and soil with 40% RH. The degradation was evaluated by observing the changes in appearance, chemical signatures, mechanical properties, and molecular weight of samples. Both PHB and PHBV were degraded completely after two weeks in 100% RH soil conditions and showed significant reductions in mechanical properties after just three days. The samples in 40% RH soil, however, showed minimal changes in mechanical properties, melting temperatures/crystallinity, and molecular weight over six weeks. By observing the degradation behavior for different soil conditions, these results can pave the way for identifying situations where the current use of plastics can be replaced with biodegradable alternatives.


Subject(s)
Biodegradable Plastics , Polyhydroxyalkanoates , Polyesters/chemistry , Soil , Polyhydroxyalkanoates/chemistry , Biodegradation, Environmental
9.
Membranes (Basel) ; 13(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36984645

ABSTRACT

Block copolymers generally have peculiar morphological characteristics, such as strong phase separation. They have been actively applied to polymer electrolyte membranes for proton exchange membrane fuel cells (PEMFCs) to obtain well-defined hydrophilic regions and water channels as a proton pathway. Although molecular simulation tools are advantageous to investigate the mechanism of water channel formation based on the chemical structure and property relationships, classical molecular dynamics simulation has limitations regarding the model size and time scale, and these issues need to be addressed. In this study, we investigated the morphology of sulfonated block copolymers synthesized for PEM applications using a mesoscale simulation based on the dynamic mean-field density functional method, widely applied to investigate macroscopic systems such as polymer blends, micelles, and multi-block/grafting copolymers. Despite the similar solubility parameters of the monomers in our block-copolymer models, very different morphologies in our 3D mesoscale models were obtained. The model with sulfonated monomers, in which the number of sulfonic acid groups is twice that of the other model, showed better phase separation and water channel formation, despite the short length of its hydrophilic block. In conclusion, this unexpected behavior indicates that the role of water molecules is important in making PEM mesoscale models well-equilibrated in the mesoscale simulation, which results in the strong phase separation between hydrophilic and hydrophobic regions and the ensuing well-defined water channel. PEM synthesis supports the conclusion that using the sulfonated monomers with a high sulfonation degree (32.5 mS/cm) will be more effective than using the long hydrophilic block with a low sulfonation degree (25.2 mS/cm).

10.
Blood Adv ; 7(1): 92-105, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36269842

ABSTRACT

Bruton tyrosine kinase (BTK) is an important signaling hub that activates the B-cell receptor (BCR) signaling cascade. BCR activation can contribute to the growth and survival of B-cell lymphoma or leukemia. The inhibition of the BCR signaling pathway is critical for blocking downstream events and treating B-cell lymphomas. Herein, we report potent and orally available proteolysis-targeting chimeras (PROTACs) that target BTK to inactivate BCR signaling. Of the PROTACs tested, UBX-382 showed superior degradation activity for wild-type (WT) and mutant BTK proteins in a single-digit nanomolar range of half-maximal degradation concentration in diffuse large B-cell lymphoma cell line. UBX-382 was effective on 7 out of 8 known BTK mutants in in vitro experiments and was highly effective in inhibiting tumor growth in murine xenograft models harboring WT or C481S mutant BTK-expressing TMD-8 cells over ibrutinib, ARQ-531, and MT-802. Remarkably, oral dosing of UBX-382 for <2 weeks led to complete tumor regression in 3 and 10 mg/kg groups in murine xenograft models. UBX-382 also provoked the cell type-dependent and selective degradation of cereblon neosubstrates in various hematological cancer cells. These results suggest that UBX-382 treatment is a promising therapeutic strategy for B-cell-related blood cancers with improved efficacy and diverse applicability.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Pyrimidines , Humans , Animals , Mice , Agammaglobulinaemia Tyrosine Kinase , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Signal Transduction , Disease Models, Animal , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics
11.
Org Lett ; 24(27): 4881-4885, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35775977

ABSTRACT

The DNA-encoded library (DEL) technology is a new method for discovering hit compounds for target proteins in the pharmaceutical industry. The N-acylsulfonamide functional group has been reported to exhibit various pharmacological activities, and based on this, the demand for a method that allows its introduction into the DEL platform has increased. In this report, a procedure for synthesizing N-acylsulfonamide functional groups applicable to DEL construction was developed in the presence of a copper reagent and water as a nucleophile from simple alkynes or sulfonyl azides, which are widely commercially available. Furthermore, we prove that a new alternative procedure can be used to construct a DNA-encoded library.


Subject(s)
Azides , Copper , Alkynes , Catalysis , DNA , Molecular Structure
12.
Bioorg Chem ; 127: 105923, 2022 10.
Article in English | MEDLINE | ID: mdl-35717803

ABSTRACT

Molecular glue degraders, such as lenalidomide and pomalidomide, bind to cereblon (CRBN) E3 ligase and subsequently recruit neosubstrate proteins, Ikaros (IKZF1) and Aiolos (IKZF3), for the ubiquitination-proteasomal degradation process. In this study, we explored structure-activity relationship analysis for novel GSPT1 degraders utilizing a benzotriazinone scaffold previously discovered as a novel CRBN binder. In particular, we focused on the position of the ureido group on the benzotriazinone scaffold, substituent effect on the phenylureido group, and methyl substitution on the benzylic position of benzotriazinone. As a result, we identified 34f (TD-522), which exhibits strong anti-proliferative effects in both KG-1 (EC50 = 0.5 nM) and TMD-8 (EC50 = 5.2 nM) cell lines. Compound 34f effectively induced GSPT1 degradation with a DC50 of 0.269 nM and Dmax of >95 % at 10 nM concentration in KG-1 cells. An in vivo xenograft study showed that compound 34f effectively suppressed TMD8-driven tumor growth, suggesting a potential role in the development of novel GSPT1 degraders.


Subject(s)
Adaptor Proteins, Signal Transducing , Animals , Disease Models, Animal , Heterografts , Humans , Lenalidomide/chemistry , Lenalidomide/pharmacology , Mice , Proteolysis , Structure-Activity Relationship
13.
Cancers (Basel) ; 13(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830894

ABSTRACT

Chimeric antigen receptor (CAR) technology has been highlighted in recent years as a new therapeutic approach for cancer treatment. Although the impressive efficacy of CAR-based T cell adoptive immunotherapy has been observed in hematologic cancers, limited effect has been reported on solid tumors. Approximately 20% of gastric cancer (GC) patients exhibit a high expression of c-Met. We have generated an anti c-Met CAR construct that is composed of a single-chain variable fragment (scFv) of c-Met antibody and signaling domains consisting of CD28 and CD3ζ. To test the CAR construct, we used two cell lines: the Jurkat and KHYG-1 cell lines. These are convenient cell lines, compared to primary T cells, to culture and to test CAR constructs. We transduced CAR constructs into Jurkat cells by electroporation. c-Met CAR Jurkat cells secreted interleukin-2 (IL-2) only when incubated with c-Met positive GC cells. To confirm the lytic function of CAR, the CAR construct was transduced into KHYG-1, a NK/T cell line, using lentiviral particles. c-Met CAR KHYG-1 showed cytotoxic effect on c-Met positive GC cells, while c-Met negative GC cell lines were not eradicated by c-Met CAR KHYG-1. Based on these data, we created c-Met CAR T cells from primary T cells, which showed high IL-2 and IFN-γ secretion when incubated with the c-Met positive cancer cell line. In an in vivo xenograft assay with NSG bearing MKN-45, a c-Met positive GC cell line, c-Met CAR T cells effectively inhibited the tumor growth of MKN-45. Our results show that the c-Met CAR T cell therapy can be effective on GC.

14.
Sci Adv ; 7(40): eabi9062, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34586854

ABSTRACT

In membrane-based separation, molecular size differences relative to membrane pore sizes govern mass flux and separation efficiency. In applications requiring complex molecular differentiation, such as in natural gas processing, cascaded pore size distributions in membranes allow different permeate molecules to be separated without a reduction in throughput. Here, we report the decoration of microporous polymer membrane surfaces with molecular fluorine. Molecular fluorine penetrates through the microporous interface and reacts with rigid polymeric backbones, resulting in membrane micropores with multimodal pore size distributions. The fluorine acts as angstrom-scale apertures that can be controlled for molecular transport. We achieved a highly effective gas separation performance in several industrially relevant hollow-fibrous modular platform with stable responses over 1 year.

15.
Cancers (Basel) ; 13(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209505

ABSTRACT

Immunotherapies are emerging as powerful weapons for the treatment of malignancies. Chimeric antigen receptor (CAR)-engineered T cells have shown dramatic clinical results in patients with hematological malignancies. However, it is still challenging for CAR T cell therapy to be successful in several types of blood cancer and most solid tumors. Many attempts have been made to enhance the efficacy of CAR T cell therapy by modifying the CAR construct using combination agents, such as compounds, antibodies, or radiation. At present, technology to improve CAR T cell therapy is rapidly developing. In this review, we particularly emphasize the most recent studies utilizing genetic engineering and synergistic agents to improve CAR T cell therapy.

16.
Nat Commun ; 12(1): 3710, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140475

ABSTRACT

The growing need for the implementation of stretchable biosensors in the body has driven rapid prototyping schemes through the direct ink writing of multidimensional functional architectures. Recent approaches employ biocompatible inks that are dispensable through an automated nozzle injection system. However, their application in medical practices remains challenged in reliable recording due to their viscoelastic nature that yields mechanical and electrical hysteresis under periodic large strains. Herein, we report sponge-like poroelastic silicone composites adaptable for high-precision direct writing of custom-designed stretchable biosensors, which are soft and insensitive to strains. Their unique structural properties yield a robust coupling to living tissues, enabling high-fidelity recording of spatiotemporal electrophysiological activity and real-time ultrasound imaging for visual feedback. In vivo evaluations of custom-fit biosensors in a murine acute myocardial infarction model demonstrate a potential clinical utility in the simultaneous intraoperative recording and imaging on the epicardium, which may guide definitive surgical treatments.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Diagnostic Imaging/methods , Myocardial Infarction/diagnostic imaging , Pericardium/diagnostic imaging , Animals , Biocompatible Materials/chemistry , Cell Line , Disease Models, Animal , Electrocardiography , Electrophysiological Phenomena , Image Processing, Computer-Assisted , Ink , Male , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Myoblasts/metabolism , Myoblasts/pathology , Prostheses and Implants , Silicones/chemistry , Spatio-Temporal Analysis , Swine , Ultrasonography
17.
Anticancer Res ; 41(4): 1811-1819, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33813386

ABSTRACT

BACKGROUND/AIM: Glioblastoma is the most common cancer among primary brain tumors, however, its prognosis and treatment advances are very poor. Here, we investigated whether c-Met, FOLR1, and AXL proteins are promising targets for chimeric antigen receptor (CAR) T-cell therapy, for they are known to be over-expressed in a variety of solid tumors. MATERIALS AND METHODS: CAR constructs were prepared and CAR KHYG-1 cells targeting c-Met, FOLR1, or AXL were made by lentiviral transduction. The activity of CAR KHYG-1 cells against cancer cells was measured by cytokine secretion and cell lysis assays. RESULTS: c-Met and AXL were over-expressed in most glioblastoma cell lines (11/13), but not in neuroblastoma cell lines (0/8). FOLR1 was over-expressed only in one among 16 glioblastoma cell lines. Our antigen-specific CAR KHYG-1 cells eradicated target positive glioblastoma cells selectively. CONCLUSION: Anti-c-Met and anti-AXL CAR NK or T cells could be effective in glioblastoma cells.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Immunotherapy, Adoptive , Killer Cells, Natural/immunology , Proto-Oncogene Proteins c-met/immunology , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Coculture Techniques , Cytokines/metabolism , Cytotoxicity, Immunologic , Folate Receptor 1/immunology , Folate Receptor 1/metabolism , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Jurkat Cells , Killer Cells, Natural/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , Axl Receptor Tyrosine Kinase
18.
Molecules ; 26(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802888

ABSTRACT

Epigenetic regulation is known to play a key role in progression of anti-cancer therapeutics. Lysine acetylation is an important mechanism in controlling gene expression. There has been increasing interest in bromodomain owing to its ability to modulate transcription of various genes as an epigenetic 'reader.' Herein, we report the design, synthesis, and X-ray studies of novel aristoyagonine (benzo[6,7]oxepino[4,3,2-cd]isoindol-2(1H)-one) derivatives and investigate their inhibitory effect against Brd4 bromodomain. Five compounds 8ab, 8bc, 8bd, 8be, and 8bf have been discovered with high binding affinity over the Brd4 protein. Co-crystal structures of these five inhibitors with human Brd4 bromodomain demonstrated that it has a key binding mode occupying the hydrophobic pocket, which is known to be the acetylated lysine binding site. These novel Brd4 bromodomain inhibitors demonstrated impressive inhibitory activity and mode of action for the treatment of cancer diseases.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Enzyme Inhibitors/chemistry , Isoquinolines/chemistry , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Acetylation , Binding Sites/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Isoquinolines/chemical synthesis , Lysine/chemistry , Lysine/metabolism , Protein Binding , Protein Domains/genetics , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Oncol Lett ; 21(6): 473, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33907583

ABSTRACT

Since bromodomain containing 4 (brd4) has been considered as a prominent cancer target, numerous attempts have been made to develop potent brd4 bromodomain inhibitors. The present study provided a novel chemical scaffold which inhibited brd4 activity. Mid-throughput screening against brd4 bromodomain was performed using alpha-screen and homogeneous time-resolved fluorescence assays. Furthermore, cell cytotoxicity and xenograft assays were performed to examine if the compound was effective both in vitro and in vivo. As a result, it was revealed that compounds having naphthalene-1,4-dione scaffold inhibited the binding of bromodomain to acetylated histone. The compounds with naphthalene-1,4-dione had cytotoxic effects against the Ty82 cell line, a NUT midline carcinoma cell line, whose proliferation is dependent on brd4 activity. A10, one of the compounds with naphthalene-1,4-dione scaffold, also exhibited tumor growth inhibition effects in the xenograft assay. In addition, the compounds exhibited cytotoxic effects against gastric cancer cell lines which were resistant to I-BET-762, a BET bromodomain inhibitor. In conclusion, the novel scaffold to suppress brd4 activity was effective against cancer cells both in vitro and in vivo.

20.
Int J Mol Sci ; 21(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271901

ABSTRACT

CD19 is the most promising target for developing chimeric-antigen receptor (CAR) T cells against B-cell leukemic cancer. Currently, two CAR-T-cell products, Kymriah and Yescarta, are approved for leukemia patients, and various anti-CD19 CAR T cells are undergoing clinical trial. Most of these anti-CD19 CAR T cells use FMC63 single-chain variable fragments (scFvs) for binding CD19 expressed on the cancer cell surface. In this study, we screened several known CD19 scFvs for developing anti-CD19 CAR T cells. We used the KHYG-1 NK/T-cell line for screening of CD19 scFvs because it has advantages in terms of cell culture and gene transduction compared to primary T cells. Using our CAR construct backbone, we made anti-CD19 CAR constructs which each had CD19 scFvs including FMC63, B43, 25C1, BLY3, 4G7, HD37, HB12a, and HB12b, then made each anti-CD19 CAR KHYG-1 cells. Interestingly, only FMC63 CAR KHYG-1 and 4G7 CAR KHYG-1 efficiently lysed CD19-positive cell lines. In addition, in Jurkat cell line, only these two CAR Jurkat cell lines secreted IL-2 when co-cultured with CD19-positive cell line, NALM-6. Based on these results, we made FMC63 CAR T cells and 4G7 CAR T cells from PBMC. In in vitro lysis assay, 4G7 CAR T cells lysed CD19-positive cell line as well as FMC63 CAR T cells. In in vivo assay with NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, 4G7 CAR T cells eradicated NALM-6 as potently as FMC63 CAR T cells. Therefore, we anticipate that 4G7 CAR T cells will show as good a result as FMC63 CAR T cells for B-cell leukemia patients.


Subject(s)
Antigens, CD19/immunology , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Single-Chain Antibodies/immunology , Amino Acid Sequence , Animals , Antigens, Neoplasm/immunology , Cell Line, Tumor , Cytokines/metabolism , Disease Models, Animal , Gene Order , Humans , Immunotherapy, Adoptive , Leukemia/immunology , Leukemia/pathology , Leukemia/therapy , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...