Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(28): 32131-32142, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32551480

ABSTRACT

In oxide-based RRAMs using reactive electrodes such as Al, the properties of spontaneously formed interfacial layers are critical factors in determining the resistive switching (RS) performance and reliability. This interfacial layer can provide the beneficial function of oxygen reservoir and series resistance, but is very labile and prone to deterioration, causing fatal reliability problems. Moreover, there are technical difficulties in manipulating and improving the functional interfacial layer due to the various interaction dynamics near the interface and the unstable thermodynamic properties of Al. In this work, laser-assisted interface engineering, which allows exquisite manipulation of the labile interfacial layer, is proposed to improve the reliability and performance of Al/ZnO/Al RRAMs. In addition to photothermal and photochemical effects, the proposed laser process enables fine control over out-diffusions of Al atoms in the vicinity of the ZnO/Al interface, forming a robust interfacial layer with a uniform morphology and abundant oxygen Frenkel pairs. This laser-engineered interfacial layer increases the RHRS/RLRS ratio by over 100-fold and reduces RHRS variation with improved oxygen reservoir ability. It also appears to reduce leakage current and power consumption by acting as a stable series resistance. The correlation between structural and stoichiometric properties of the functional interfacial layer and the performance and reliability of the RRAM is explicated. The results suggest that laser-assisted interface engineering can be one of the most promising methods to implement highly reliable, high-performance Al/ZnO/Al RRAMs.

2.
Polymers (Basel) ; 10(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30961271

ABSTRACT

In this contribution, sulfonated poly(ether ether ketone) (SPEEK) is inter-connected using a hydrophobic oligomer via poly-condensation reaction to produce SPEEK analogues as PEMs. Prior sulfonation is performed for SPEEK to avoid random sulfonation of multi-block copolymers that may destroy the mechanical toughness of polymer backbone. A greater local density of ionic moieties exist in SPEEK and good thermomechanical properties of hydrophobic unit offer an unique approach to promote the proton conductivity as well as thermomechanical stability of membrane, as verify from AC impedance and TGA. The morphological behavior and phase variation of membranes are explored using FE-SEM and AFM; the triblock (XYX) membranes exhibits a nano-phase separated morphology. Performance of PEFC integrated with blend and block copolymer membranes is determined at 60 °C under 60% RH. As a result, the triblock (XYX) membrane has a high power density than blend (2X1Y) membrane.

SELECTION OF CITATIONS
SEARCH DETAIL
...