Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Hear Res ; 441: 108921, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042127

ABSTRACT

The inbred mouse strain CBA/CaJ is a frequently used animal model of age-related hearing loss in humans. These mice display significant hearing loss at a relatively advanced age, similar to most humans, with progressive loss of hearing as the mouse continues to age. While important descriptions of hearing loss in this mouse strain at multiple ages have previously been published, shortcomings persist in the data for hearing over the lifespan of the mouse. Therefore, we analyzed auditory brainstem response threshold data from records maintained by our research group to yield an extensive database of thresholds over nearly the entire life span of the CBA/CaJ mouse (from 79 to 1085 days). Data was collected from in-house bred mice of CBA/CaJ stock, initially from The Jackson Laboratory. Data was collected using BiosigRZ software and TDT System III hardware. Thresholds were routinely measured in conjunction with behavioral and electrophysiological experiments; only responses from baseline or experimentally naïve animals were analyzed. The resulting data set comprised 376 female mice and 441 males. At the lowest and highest frequencies (8 & 32 kHz), initial thresholds were just under 30 dB SPL and increased slowly until they were significantly different at 16-18 months compared to 1-3 months age, with the difference increasing over subsequent ages. At the middle frequencies (12 & 16 kHz), initial thresholds were just under 20 dB SPL and increased until they became different from initial at 16-18 months. At 24 kHz, initial thresholds were just above 20 dB and became different from initial at 13-16 months of age. The rate of change of thresholds with age were similar for all frequencies until about 30 months of age, when 32 kHz threshold changes lagged behind other frequencies. Generally, CBA/CaJ mice in our colony display relatively low thresholds until approximately 16 months of age, depending on frequency. After 16-18 months, thresholds become significantly worse. After approximately 20-22 months thresholds increase linearly with age.


Subject(s)
Longevity , Presbycusis , Humans , Male , Mice , Female , Animals , Child, Preschool , Aging/physiology , Auditory Threshold/physiology , Mice, Inbred CBA , Mice, Inbred Strains , Evoked Potentials, Auditory, Brain Stem
2.
Nutrients ; 11(10)2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31581549

ABSTRACT

Diseases involving inflammation and oxidative stress can be exacerbated by high blood glucose levels. Due to tight metabolic regulation, safely reducing blood glucose can prove difficult. The ketogenic diet (KD) reduces absolute glucose and insulin, while increasing fatty acid oxidation, ketogenesis, and circulating levels of ß-hydroxybutyrate (ßHB), acetoacetate (AcAc), and acetone. Compliance to KD can be difficult, so alternative therapies that help reduce glucose levels are needed. Exogenous ketones provide an alternative method to elevate blood ketone levels without strict dietary requirements. In this study, we tested the changes in blood glucose and ketone (ßHB) levels in response to acute, sub-chronic, and chronic administration of various ketogenic compounds in either a post-exercise or rested state. WAG/Rij (WR) rats, a rodent model of human absence epilepsy, GLUT1 deficiency syndrome mice (GLUT1D), and wild type Sprague Dawley rats (SPD) were assessed. Non-pathological animals were also assessed across different age ranges. Experimental groups included KD, standard diet (SD) supplemented with water (Control, C) or with exogenous ketones: 1, 3-butanediol (BD), ßHB mineral salt (KS), KS with medium chain triglyceride/MCT (KSMCT), BD acetoacetate diester (KE), KE with MCT (KEMCT), and KE with KS (KEKS). In rested WR rats, the KE, KS, KSMCT groups had lower blood glucose level after 1 h of treatment, and in KE and KSMCT groups after 24 h. After exercise, the KE, KSMCT, KEKS, and KEMCT groups had lowered glucose levels after 1 h, and in the KEKS and KEMCT groups after 7 days, compared to control. In GLUT1D mice without exercise, only KE resulted in significantly lower glucose levels at week 2 and week 6 during a 10 weeks long chronic feeding study. In 4-month and 1-year-old SPD rats in the post-exercise trials, blood glucose was significantly lower in KD and KE, and in KEMCT groups, respectively. After seven days, the KSMCT group had the most significantly reduced blood glucose levels, compared to control. These results indicate that exogenous ketones were efficacious in reducing blood glucose levels within and outside the context of exercise in various rodent models of different ages, with and without pathology.


Subject(s)
3-Hydroxybutyric Acid/pharmacology , Acetoacetates/pharmacology , Blood Glucose/drug effects , Butylene Glycols/pharmacology , Carbohydrate Metabolism, Inborn Errors/therapy , Diet, Ketogenic , Dietary Supplements , Epilepsy, Absence/therapy , Monosaccharide Transport Proteins/deficiency , Animals , Biomarkers , Blood Glucose/metabolism , Carbohydrate Metabolism, Inborn Errors/blood , Carbohydrate Metabolism, Inborn Errors/genetics , Carbohydrate Metabolism, Inborn Errors/physiopathology , Disease Models, Animal , Down-Regulation , Epilepsy, Absence/blood , Epilepsy, Absence/genetics , Epilepsy, Absence/physiopathology , Glucose Transporter Type 1/deficiency , Glucose Transporter Type 1/genetics , Male , Mice, Knockout , Monosaccharide Transport Proteins/blood , Monosaccharide Transport Proteins/genetics , Physical Exertion , Rats, Sprague-Dawley , Rest , Time Factors
3.
J Vis Exp ; (143)2019 01 07.
Article in English | MEDLINE | ID: mdl-30663672

ABSTRACT

The overall goal of this study is to describe the methodology of the elevated plus maze (EPM) test in combination with a video tracking software. The purpose of the method is to document the effect of various potential anxiolytic treatments on laboratory rodent models. The EPM test is based on the rodents' proclivity toward protected, enclosed dark spaces and unconditioned fear of open spaces and heights, and their innate intense motivation to explore novel environments. The EPM test is a widely used behavioral test for investigating the anxiolytic or anxiogenic responses of rodents given drugs that are known to affect behavior. Observation demonstrating a decreased proportion of time spent on closed arms, an increased proportion of time spent on open arms, a reduced number of entries to closed arms, and an elevated number of entries to open arms measured by the EPM test may reflect reduced anxiety levels. Using this method, the effect of exogenous ketone supplements on anxiety-related behavior is tested in Sprague Dawley (SPD) rats. Exogenous ketone supplements are chronically fed to the rats for 83 days or subchronically and acutely orally gavaged, daily for 7 days, before conducting the EPM test. Behavioral data collection is performed using the SMART video tracking system by a blinded observer at the end of the treatments. The main findings indicate that the EPM test is an effective method to detect the ketone supplement-induced anxiolytic effect and can be considered a sensitive measure to assess changes in anxiety behavior associated with drug- or metabolic-based therapies.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Maze Learning/drug effects , Videotape Recording/methods , Animals , Anti-Anxiety Agents/pharmacology , Male , Mice , Rats , Rats, Sprague-Dawley , Software
4.
Neurobiol Aging ; 61: 225-237, 2018 01.
Article in English | MEDLINE | ID: mdl-29032894

ABSTRACT

Hyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aß1-40/42 and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aß1-40/42, ß-secretase activity was increased in insulin-resistant mice and monkeys. In insulin-resistant mice, inhibition of hepatic PKC-λ/ι sufficient to correct hepatic abnormalities and hyperinsulinemia simultaneously reversed increases in Akt, atypical protein kinase C (aPKC), ß-secretase, and Aß1-40/42, and restored acute Akt activation. However, 2 aPKC inhibitors additionally blocked insulin's ability to activate brain PKC-λ/ι and thereby increase ß-secretase and Aß1-40/42. Furthermore, direct blockade of brain aPKC simultaneously corrected an impairment in novel object recognition in high-fat-fed insulin-resistant mice. In neuronal cells and/or mouse hippocampal slices, PKC-ι/λ activation by insulin, metformin, or expression of constitutive PKC-ι provoked increases in ß-secretase, Aß1-40/42, and phospho-thr-231-tau that were blocked by various PKC-λ/ι inhibitors, but not by an Akt inhibitor. PKC-λ/ι provokes increases in brain ß-secretase, Aß1-40/42, and phospho-thr-231-tau. Excessive signaling via PKC-λ/ι may link hyperinsulinemia and other PKC-λ/ι activators to pathological and functional abnormalities in Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Hyperinsulinism/etiology , Isoenzymes/metabolism , Memory , Neurons/metabolism , Peptide Fragments/metabolism , Protein Kinase C/metabolism , tau Proteins/metabolism , Animals , Cells, Cultured , Male , Mice, Inbred C57BL , Phosphorylation
5.
Brain Behav ; 6(5): e00458, 2016 05.
Article in English | MEDLINE | ID: mdl-27110436

ABSTRACT

INTRODUCTION: We have shown in previous work that acute episodes of predator exposure occurring in the context of chronic social instability produced PTSD-like sequelae in rats. Our animal model of PTSD contained two components: (1) acute trauma, immobilization of rats in close proximity to a cat twice in 10 days, and (2) chronic social instability, 31 days of randomized housing of cage cohorts. Here we tested the hypothesis that daily social stimulation would block the development of the PTSD-like sequelae. METHODS: Beginning 24 h after the first cat exposure, adult male rats were given our established PTSD model, alone or in conjunction with daily social stimulation, in which all rats within a group interacted in a large apparatus for 2 h each day for the final 30 days of the PTSD regimen. All behavioral, for example, anxiety, memory, startle testing, and physiological assessments, for example, body growth, organ weights, and corticosterone levels, took place following completion of the psychosocial stress period. RESULTS: Daily social stimulation blocked the expression of a subset of PTSD-like effects, including predator-based cued fear conditioning, enhanced startle response, heightened anxiety on the elevated plus maze and the stress-induced suppression of growth rate. We also found that social stimulation and psychosocial stress produced equivalent outcomes in some measures, including adrenal and heart hypertrophy, thymus atrophy, and a reduction in poststress corticosterone levels. CONCLUSIONS: Daily exposure of rats to a highly social environment blocked the development of a subset of trauma-induced sequelae, particularly fear-related outcomes. It is notable that daily social stimulation normalized a subset, but not all, of the PTSD-like effects. We discuss our findings in the context of the literature demonstrating that social stimulation can counteract the adverse effects of traumatic stress on behavioral and physiological measures, as well as to produce its own stress-like outcomes.


Subject(s)
Behavior, Animal/physiology , Social Behavior , Stress Disorders, Post-Traumatic/therapy , Animals , Disease Models, Animal , Male , Rats, Sprague-Dawley
6.
Physiol Behav ; 147: 183-92, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25911267

ABSTRACT

We have a well-established animal model of PTSD composed of predator exposure administered in conjunction with social instability that produces PTSD-like behavioral and physiological abnormalities one month after stress initiation. Here, we assessed whether the PTSD-like effects would persist for at least 4months after the initiation of the psychosocial stress regimen. Adult male Sprague-Dawley rats were exposed to either 2 or 3 predator-based fear conditioning sessions. During each session, rats were placed in a chamber for a 3-min period that terminated with a 30-s tone, followed by 1h of immobilization of the rats during cat exposure (Day 1). All rats in the stress groups received a second fear conditioning session 10days later (Day 11). Half of the stress rats received a third fear conditioning session 3weeks later (Day 32). The two cat-exposed groups were also exposed to daily unstable housing conditions for the entire duration of the psychosocial stress regimen. The control group received stable (conventional) housing conditions and an equivalent amount of chamber exposure on Days 1, 11 and 32, without cat exposure. Behavioral testing commenced for all groups on Day 116. The stress groups demonstrated increased anxiety on the elevated plus maze, impaired object recognition memory and robust contextual and cued fear conditioned memory 3months after the last conditioning session. Combined data from the two stress groups revealed lower post-stress corticosterone levels and greater diastolic blood pressure relative to the control group. These findings indicate that predator-based psychosocial stress produces persistent PTSD-like physiological and behavioral abnormalities that may provide insight into the neurobiological and endocrine sequelae in traumatized people with PTSD.


Subject(s)
Disease Models, Animal , Exploratory Behavior/physiology , Stress Disorders, Post-Traumatic/etiology , Stress Disorders, Post-Traumatic/psychology , Stress, Psychological/complications , Analysis of Variance , Animals , Blood Pressure , Body Weight , Cats , Cues , Fear/psychology , Heart Rate , Immobilization/methods , Male , Maze Learning/physiology , Memory/physiology , Rats , Rats, Sprague-Dawley , Reflex, Startle , Time Factors
7.
Hippocampus ; 22(3): 577-89, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21538655

ABSTRACT

We have studied the effects of spatial learning and predator stress-induced amnesia on the expression of calcium/calmodulin-dependent protein kinase II (CaMKII), brain-derived neurotrophic factor (BDNF) and calcineurin in the hippocampus, basolateral amygdala (BLA), and medial prefrontal cortex (mPFC). Adult male rats were given a single training session in the radial-arm water maze (RAWM) composed of 12 trials followed by a 30-min delay period, during which rats were either returned to their home cages or given inescapable exposure to a cat. Immediately following the 30-min delay period, the rats were given a single test trial in the RAWM to assess their memory for the hidden platform location. Under control (no stress) conditions, rats exhibited intact spatial memory and an increase in phosphorylated CaMKII (p-CaMKII), total CaMKII, and BDNF in dorsal CA1. Under stress conditions, rats exhibited impaired spatial memory and a suppression of all measured markers of molecular plasticity in dorsal CA1. The molecular profiles observed in the BLA, mPFC, and ventral CA1 were markedly different from those observed in dorsal CA1. Stress exposure increased p-CaMKII in the BLA, decreased p-CaMKII in the mPFC, and had no effect on any of the markers of molecular plasticity in ventral CA1. These findings provide novel observations regarding rapidly induced changes in the expression of molecular plasticity in response to spatial learning, predator exposure, and stress-induced amnesia in brainregions involved in different aspects of memory processing.


Subject(s)
Amnesia/metabolism , Amygdala/metabolism , Hippocampus/metabolism , Maze Learning/physiology , Predatory Behavior/physiology , Prefrontal Cortex/metabolism , Stress, Psychological/metabolism , Amnesia/etiology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Phosphorylation/physiology , Rats , Rats, Sprague-Dawley , Stress, Psychological/complications
8.
Front Behav Neurosci ; 5: 30, 2011.
Article in English | MEDLINE | ID: mdl-21738501

ABSTRACT

We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

9.
Int J Neuropsychopharmacol ; 12(3): 329-41, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18706130

ABSTRACT

Agomelatine, a novel antidepressant with established clinical efficacy, acts as a melatonin receptor agonist and 5-HT(2C) receptor antagonist. As stress is a significant risk factor in the development of depression, we sought to determine if chronic agomelatine treatment would block the stress-induced impairment of memory in rats trained in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. Moreover, since neural cell adhesion molecule (NCAM) is known to be critically involved in memory consolidation and synaptic plasticity, we evaluated the effects of agomelatine on NCAM, and polysialylated NCAM (PSA-NCAM) expression in rats given spatial memory training with or without predator stress. Adult male rats were pre-treated with agomelatine (10 mg/kg i.p., daily for 22 d), followed by a single day of RAWM training and memory testing. Rats were given 12 training trials and then they were placed either in their home cages (no stress) or near a cat (predator stress). Thirty minutes later the rats were given a memory test trial followed immediately by brain extraction. We found that: (1) agomelatine blocked the predator stress-induced impairment of spatial memory; (2) agomelatine-treated stressed, as well as non-stressed, rats exhibited a rapid training-induced increase in the expression of synaptic NCAM in the ventral hippocampus; and (3) agomelatine treatment blocked the water-maze training-induced decrease in PSA-NCAM levels in both stressed and non-stressed animals. This work provides novel observations which indicate that agomelatine blocks the adverse effects of stress on hippocampus-dependent memory and activates molecular mechanisms of memory storage in response to a learning experience.


Subject(s)
Acetamides/pharmacology , Antidepressive Agents/pharmacology , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Neural Cell Adhesion Molecule L1/metabolism , Sialic Acids/metabolism , Space Perception/drug effects , Acetamides/therapeutic use , Analysis of Variance , Animals , Antidepressive Agents/therapeutic use , Corticosterone/blood , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Learning Disabilities/drug therapy , Learning Disabilities/etiology , Memory Disorders/drug therapy , Memory Disorders/etiology , Rats , Rats, Sprague-Dawley , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/pathology
10.
Pediatr Diabetes ; 9(6): 531-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19067891

ABSTRACT

BACKGROUND/OBJECTIVE: We previously reported that chronic hyperglycemia, but not hypoglycemia, was associated with the reduction of neuronal size in the rat brain. We hypothesized that hyperglycemia-induced changes in neuronal structure would have negative consequences, such as impaired learning and memory. We therefore assessed the effects of hyperglycemia and hypoglycemia on neuronal dendritic structure and cognitive functioning in young rats. DESIGN/METHODS: Experimental manipulations were conducted on male Wistar rats for 8 wk, beginning at 4 wk of age. At the completion of the treatments, all rats were trained in the radial-arm water maze, a spatial (hippocampus-dependent) learning and memory task. Three groups of rats were tested: an untreated control group, a streptozotocin-induced diabetic (STZ-D) group, and an intermittent hypoglycemic group. Following behavioral training, the brains of all animals were examined with histologic and biochemical measurements. RESULTS: Peripheral hyperglycemia was associated with significant increases in brain sorbitol (7.5 +/- 1.6 vs. 5.84 +/- 1.0 microM/mg) and inositol (9.6 +/- 1.4 vs. 7.1 +/- 1.1 microM/mg) and reduced taurine (0.65 +/- 0.1 vs. 1.3 +/- 0.1 mg/mg). Histologic evaluation revealed neurons with reduced dendritic branching and spine density in STZ-D rats but not in control or hypoglycemic animals. In addition, the STZ-D group exhibited impaired performance on the water maze memory test. CONCLUSIONS: Hyperglycemia, but not hypoglycemia, was associated with adverse effects on the brain polyol pathway activity, neuronal structural changes, and impaired long-term spatial memory. This finding suggests that the hyperglycemic component of diabetes mellitus has a greater adverse effect on brain functioning than does intermittent hypoglycemia.


Subject(s)
Dendrites/pathology , Diabetes Mellitus, Experimental/physiopathology , Hyperglycemia/complications , Memory Disorders/etiology , Neurons/pathology , Animals , Brain Chemistry/physiology , Cerebral Cortex/metabolism , Dendritic Spines/pathology , Dendritic Spines/physiology , Hippocampus/metabolism , Hyperglycemia/physiopathology , Hypoglycemia/complications , Hypoglycemia/physiopathology , Inositol/metabolism , Maze Learning/physiology , Memory/physiology , Rats , Rats, Wistar , Sorbitol/metabolism , Spatial Behavior/physiology , Taurine/metabolism
11.
Learn Mem ; 15(4): 271-80, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18391188

ABSTRACT

We have studied the effects of an acute predator stress experience on spatial learning and memory in adult male and female Sprague-Dawley rats. All rats were trained to learn the location of a hidden escape platform in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. In the control (non-stress) condition, female rats were superior to the males in the accuracy and consistency of their spatial memory performance tested over multiple days of training. In the stress condition, rats were exposed to the cat for 30 min immediately before or after learning, or before the 24-h memory test. Predator stress dramatically increased corticosterone levels in males and females, with females exhibiting greater baseline and stress-evoked responses than males. Despite these sex differences in the overall magnitudes of corticosterone levels, there were significant sex-independent correlations involving basal and stress-evoked corticosterone levels, and memory performance. Most importantly, predator stress impaired short-term memory, as well as processes involved in memory consolidation and retrieval, in male and female rats. Overall, we have found that an intense, ethologically relevant stressor produced a largely equivalent impairment of memory in male and female rats, and sex-independent corticosterone-memory correlations. These findings may provide insight into commonalities in how traumatic stress affects the brain and memory in men and women.


Subject(s)
Hippocampus/physiopathology , Memory Disorders/etiology , Memory Disorders/physiopathology , Predatory Behavior/physiology , Stress, Psychological/psychology , Animals , Corticosterone/blood , Disease Models, Animal , Female , Learning , Male , Memory, Short-Term , Rats , Rats, Sprague-Dawley , Sex Factors , Time Factors
12.
Curr Neuropharmacol ; 6(4): 311-21, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19587852

ABSTRACT

The development of effective pharmacotherapy for major depression is important because it is such a widespread and debilitating mental disorder. Here, we have reviewed preclinical and clinical studies on tianeptine, an atypical antidepressant which ameliorates the adverse effects of stress on brain and memory. In animal studies, tianeptine has been shown to prevent stress-induced morphological sequelae in the hippocampus and amygdala, as well as to prevent stress from impairing synaptic plasticity in the prefrontal cortex and hippocampus. Tianeptine also has memory-protective characteristics, as it blocks the adverse effects of stress on hippocampus-dependent learning and memory. We have further extended the findings on stress, memory and tianeptine here with two novel observations: 1) stress impairs spatial memory in adrenalectomized (ADX), thereby corticosterone-depleted, rats; and 2) the stress-induced impairment of memory in ADX rats is blocked by tianeptine. These findings are consistent with previous research which indicates that tianeptine produces anti-stress and memory-protective properties without altering the response of the hypothalamic-pituitary-adrenal axis to stress. We conclude with a discussion of findings which indicate that tianeptine accomplishes its anti-stress effects by normalizing stress-induced increases in glutamate in the hippocampus and amygdala. This finding is potentially relevant to recent research which indicates that abnormalities in glutamatergic neurotransmission are involved in the pathogenesis of depression. Ultimately, tianeptine's prevention of depression-induced sequelae in the brain is likely to be a primary factor in its effectiveness as a pharmacological treatment for depression.

13.
Eur Neuropsychopharmacol ; 18(2): 87-98, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17566714

ABSTRACT

Extensive research has shown that the antidepressant tianeptine blocks the adverse effects of chronic stress on hippocampal functioning. The current series of experiments extended this area of investigation by examining the influence of tianeptine on acute stress-induced impairments of spatial (hippocampus-dependent) memory. Tianeptine (10 mg/kg, ip) administered to adult male rats before, but not after, water maze training blocked the amnestic effects of predator stress (occurring between training and retrieval) on memory. The protective effects of tianeptine on memory occurred in rats which had extensive pre-stress training, as well as in rats which had only a single day of training. Tianeptine blocked stress effects on memory without altering the stress-induced increase in corticosterone levels. Propranolol, a beta-adrenergic receptor antagonist (5 and 10 mg/kg, ip), in contrast, did not block stress-induced amnesia. These findings indicate that treatment with tianeptine, unlike propanolol, provides an effective means with which to block the adverse effects of stress on cognitive functions of the hippocampus.


Subject(s)
Adrenergic beta-Antagonists/administration & dosage , Antidepressive Agents, Tricyclic/administration & dosage , Memory Disorders/prevention & control , Propranolol/administration & dosage , Thiazepines/administration & dosage , Animals , Behavior, Animal , Corticosterone/blood , Disease Models, Animal , Male , Maze Learning/drug effects , Memory Disorders/blood , Memory Disorders/etiology , Predatory Behavior , Rats , Rats, Sprague-Dawley , Stress, Psychological/blood , Stress, Psychological/complications , Stress, Psychological/etiology
14.
Neural Plast ; 2007: 60803, 2007.
Article in English | MEDLINE | ID: mdl-17641736

ABSTRACT

We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our "temporal dynamics" model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a "configural/cognitive map" mode to a "flashbulb memory" mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.


Subject(s)
Amnesia/physiopathology , Emotions/physiology , Memory/physiology , Models, Psychological , Stress, Psychological/physiopathology , Amnesia/etiology , Amnesia/psychology , Animals , Humans , Long-Term Potentiation/physiology , Psychomotor Performance/physiology , Stress, Psychological/complications , Stress, Psychological/psychology , Time Factors
15.
Pharmacol Biochem Behav ; 85(2): 298-306, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17045636

ABSTRACT

Memantine and neramexane are noncompetitive NMDA receptor antagonists which have been investigated for their promising effects in aiding memory in people with dementia. Memantine is approved for the treatment of Alzheimer's disease, and neramexane is currently under development for this indication. Therefore, the present study provided a comparative assessment of the effects of equimolar doses of memantine and neramexane on spatial (hippocampus-dependent) memory. Adult male rats were given only 3 training trials to learn the location of a hidden platform in a water maze. In control (vehicle-injected) rats, this minimal amount of training produced intact short-term (15 min), but poor long-term (24 h), memory. Pre-training administration of memantine or neramexane produced a dose-dependent enhancement of long-term memory. Pharmacokinetic experiments with equimolar doses of both agents indicated that lower plasma levels of neramexane were more effective than memantine at enhancing memory. The effective doses of both agents in the current study produced plasma levels (and extrapolated brain CSF levels) within a range of activity at NMDA receptors and plasma levels seen in patients with Alzheimer's disease. These findings provide support for the use of neramexane as a pharmacological intervention in the treatment of dementia.


Subject(s)
Cyclopentanes/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Memantine/pharmacology , Memory/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Alzheimer Disease/drug therapy , Animals , Brain-Derived Neurotrophic Factor/physiology , Dose-Response Relationship, Drug , Long-Term Potentiation/drug effects , Male , Maze Learning/drug effects , Rats , Rats, Sprague-Dawley
16.
Hippocampus ; 16(7): 571-6, 2006.
Article in English | MEDLINE | ID: mdl-16741974

ABSTRACT

We have studied the influence of predator stress (30 min of cat exposure) on long-term (24 h) spatial memory and the density of spines in basilar dendrites of CA1 neurons. Predator stress occurred either immediately before water maze training (Stress Pre-Training) or before the 24 h memory test (Stress Pre-Retrieval). The Control (nonstress) group exhibited excellent long-term spatial memory and a robust increase in the density of stubby, but not mushroom, shaped spines. The Stress Pre-Training group had impaired long-term memory and did not exhibit any changes in spine density. The Stress Pre-Retrieval group was also impaired in long-term memory performance, but this group exhibited an increase in the density of stubby, but not mushroom, shaped spines, which was indistinguishable from the control group. These findings indicate that: (1) A single day of water maze training under control conditions produced intact long-term memory and an increase in the density of stubby spines in CA1; (2) Stress before training interfered with the consolidation of information into long-term memory and suppressed the training-induced increase in spine density; and (3) Stress immediately before the 24 h memory test trial impaired the retrieval of the stored memory, but did not reverse the training-induced increase in CA1 spine density. Overall, this work provides evidence of structural plasticity in dendrites of CA1 neurons which may be involved in the consolidation process, and how spinogenesis and memory are modulated by stress.


Subject(s)
Dendritic Spines/physiology , Hippocampus/physiology , Memory/physiology , Space Perception/physiology , Stress, Psychological/physiopathology , Amnesia/physiopathology , Animals , Cats , Dendritic Spines/ultrastructure , Hippocampus/cytology , Male , Maze Learning/physiology , Neuronal Plasticity/physiology , Predatory Behavior , Rats , Rats, Sprague-Dawley
17.
Dose Response ; 4(1): 55-74, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-18648634

ABSTRACT

The relationship between glucocorticoids (GCs) and memory is complex, in that memory impairments can occur in response to manipulations that either increase or decrease GC levels. We investigated this issue by assessing the relationship between serum corticosterone (the primary rodent GC) and memory in rats trained in the radial arm water maze, a hippocampus-dependent spatial memory task. Each day, rats learned a new location of the hidden escape platform and then 30 min later their memory of the location of the platform was tested. Under control conditions, well-trained rats had excellent spatial memory and moderately elevated corticosterone levels (approximately 26 microg/dl versus a baseline of approximately 2 microg/dl). Their memory was impaired when corticosterone levels were either reduced by metyrapone (a corticosterone synthesis inhibitor) or increased by acute stress (predator exposure), forming an overall U-shaped relationship between corticosterone levels and memory. We then addressed whether there was a causal relationship between elevated corticosterone levels and impaired memory. If elevated corticosterone levels were a sufficient condition to impair memory, then exogenously administered corticosterone, alone, should have impaired performance. However, we found that spatial memory was not impaired in corticosterone-injected rats that were not exposed to the cat. This work demonstrates that an intermediate level of corticosterone correlated with optimal memory, and either a decrease or an increase in corticosterone levels, in conjunction with strong emotionality, impaired spatial memory. These findings indicate that fear-provoking conditions, which are known to engage the amygdala, interact with stress levels of corticosterone to influence hippocampal functioning.

18.
Hippocampus ; 15(8): 1006-25, 2005.
Article in English | MEDLINE | ID: mdl-16086429

ABSTRACT

This speculative review serves two purposes. First, it as an extension of the ideas we developed in a previous review (Diamond et al., Hippocampus, 2004;14:281-291), and second, it is a rebuttal to Abraham's (Hippocampus, 2004;14:675-676) critique of that review. We had speculated on the functional significance of the finding that post-training LTP induction produces retrograde amnesia. We noted the similarities between the findings that strong tetanizing stimulation can produce LTP and retrograde amnesia, and that a strong emotional experience can produce a long-lasting memory and retrograde amnesia, as well. The commonalities between LTP induction and emotional learning provided the basis of our hypothesis that an emotional experience generates endogenous LTD/depotentiation, which reverses synaptic plasticity formed during previous learning experiences, and endogenous LTP, which underlies the storage of new information. Abraham raised several concerns with our review, including the criticism that our speculation "falters because there is no evidence that stress causes LTD or depotentiation," and that research on stress and hippocampus has "failed to report any LTP-like changes." Abraham's points are well-taken because stress, in isolation, does not appear to generate long-lasting changes in baseline measures of hippocampal excitability. Here, within the context of a reply to Abraham's critique, we have provided a review of the literature on the influence of stress, novelty, fear conditioning, and the retrieval of emotional memories on cognitive and physiological measures of hippocampal functioning. An emphasis of this review is our hypothesis that endogenous forms of depotentiation, LTD and LTP are generated only when arousing experiences occur in conjunction with memory-related activation of the hippocampus and amygdala. We conclude with speculation that interactions among the different forms of endogenous plasticity underlie a form of competition by synapses and memories for access to retrieval resources.


Subject(s)
Amnesia, Retrograde/physiopathology , Emotions/physiology , Hippocampus/physiology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Memory/physiology , Stress, Physiological/physiopathology , Amnesia, Retrograde/etiology , Amygdala/physiology , Cognition/physiology , Humans , Stress, Physiological/complications , Synapses/physiology
19.
Biol Psychiatry ; 57(8): 856-64, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15820706

ABSTRACT

BACKGROUND: There is an extensive literature describing how stress disturbs cognitive processing and can exacerbate psychiatric disorders. There is, however, an insufficient understanding of the molecular mechanisms involved in stress effects on brain and behavior. METHODS: Rats were given spatial memory training in a hippocampus-dependent water maze task. We investigated how a fear-provoking experience (predator exposure) would affect their spatial memory and neural cell adhesion molecule (NCAM) levels in the hippocampus, prefrontal cortex (PFC), amygdala, and cerebellum. RESULTS: Whereas the control (nonstress) group exhibited excellent memory for the hidden platform location in the water maze, the cat-exposed (stress) group exhibited a profound impairment of memory and a marked suppression of levels of the NCAM-180 isoform in the hippocampus. Predator stress produced a more global reduction of NCAM levels in the PFC but had no effect on NCAM levels in the amygdala and cerebellum. CONCLUSIONS: This work provides a novel perspective into dynamic and structure-specific changes in the molecular events involved in learning, memory, and stress. The selective suppression of NCAM-180 in the hippocampus and the more general suppression of NCAM in the PFC provide insight into the mechanisms underlying the great sensitivity of these two structures to be disturbed by stress.


Subject(s)
Hippocampus/metabolism , Neural Cell Adhesion Molecules/biosynthesis , Prefrontal Cortex/metabolism , Space Perception/physiology , Stress, Psychological/metabolism , Stress, Psychological/psychology , Animals , Blotting, Western , Brain Chemistry/physiology , Cats , Corticosterone/blood , Fear/physiology , Male , Maze Learning/physiology , Rats , Rats, Sprague-Dawley
20.
Eur Neuropsychopharmacol ; 14 Suppl 5: S491-5, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15550347

ABSTRACT

We have reviewed two areas of research on stress, memory, and synaptic plasticity which may be relevant toward understanding the neurobiology of major depressive disorder (MDD). First, we have presented the view that the hippocampus (HC) and prefrontal cortex (PFC) function jointly as a memory system which enables multitask processing (working memory) and consolidation of contextual information. The amygdala, by contrast, is necessary for the consolidation of emotional memories. Cognitive and neurophysiological studies have shown that HC-PFC processing is impaired, and amygdaloid processing is enhanced, by stress and in anxiety and mood disorders, including MDD. Second, we have reviewed research on the behavioral and neurophysiological actions of tianeptine, an antidepressant that is known to block the adverse effects of chronic stress on hippocampal morphology. Recent work has shown that acute tianeptine enhances cognitive and electrophysiological measures of HC-PFC functioning without interfering with the emotion-induced enhancement of amygdaloid functioning in rodents. We conclude with a synthesis of the preclinical and clinical literature on stress, memory, and tianeptine with the proposal that tianeptine should enhance HC-PFC memory-related processing in people under stress.


Subject(s)
Antidepressive Agents/therapeutic use , Brain/physiopathology , Depressive Disorder/drug therapy , Depressive Disorder/physiopathology , Memory/physiology , Stress, Physiological/physiopathology , Stress, Physiological/psychology , Antidepressive Agents, Tricyclic/pharmacology , Antidepressive Agents, Tricyclic/therapeutic use , Depressive Disorder/psychology , Humans , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Thiazepines/pharmacology , Thiazepines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...