Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 10(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38625724

ABSTRACT

Streptomyces are prolific producers of secondary metabolites from which many clinically useful compounds have been derived. They inhabit diverse habitats but have rarely been reported in vertebrates. Here, we aim to determine to what extent the ecological source (bat host species and cave sites) influence the genomic and biosynthetic diversity of Streptomyces bacteria. We analysed draft genomes of 132 Streptomyces isolates sampled from 11 species of insectivorous bats from six cave sites in Arizona and New Mexico, USA. We delineated 55 species based on the genome-wide average nucleotide identity and core genome phylogenetic tree. Streptomyces isolates that colonize the same bat species or inhabit the same site exhibit greater overall genomic similarity than they do with Streptomyces from other bat species or sites. However, when considering biosynthetic gene clusters (BGCs) alone, BGC distribution is not structured by the ecological or geographical source of the Streptomyces that carry them. Each genome carried between 19-65 BGCs (median=42.5) and varied even among members of the same Streptomyces species. Nine major classes of BGCs were detected in ten of the 11 bat species and in all sites: terpene, non-ribosomal peptide synthetase, polyketide synthase, siderophore, RiPP-like, butyrolactone, lanthipeptide, ectoine, melanin. Finally, Streptomyces genomes carry multiple hybrid BGCs consisting of signature domains from two to seven distinct BGC classes. Taken together, our results bring critical insights to understanding Streptomyces-bat ecology and BGC diversity that may contribute to bat health and in augmenting current efforts in natural product discovery, especially from underexplored or overlooked environments.


Subject(s)
Chiroptera , Animals , Phylogeny , Genomics , Arizona , Bacteria
2.
BMC Genomics ; 22(1): 247, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33827425

ABSTRACT

BACKGROUND: Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with invertebrates. RESULTS: We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes) and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic potential, even among closely related strains. The isolates, which were initially identified as three distinct species based on sequence variation in the 16S rRNA locus, could be distinguished as 41 different species based on genome-wide average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14 distinct classes of BGCs (range = 9-20). Results also revealed large inter- and intra-species variation in gene content (single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall genetic diversity present in bat-associated Streptomyces. Finally, we show that genome-wide recombination has partly contributed to the large genomic variation among strains of the same species. CONCLUSIONS: Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery efforts in Streptomyces.


Subject(s)
Chiroptera , Streptomyces , Animals , Arizona , Chiroptera/genetics , Genomics , Multigene Family , New Mexico , Phylogeny , RNA, Ribosomal, 16S/genetics , Streptomyces/genetics
3.
Infect Genet Evol ; 87: 104645, 2021 01.
Article in English | MEDLINE | ID: mdl-33246085

ABSTRACT

Salmonella enterica, the causative agent of gastrointestinal diseases and typhoid fever, is a human and animal pathogen that causes significant mortality and morbidity worldwide. In this study, we examine the genomic diversity and phylogenetic relationships of 63 S. enterica isolates from human-derived clinical specimens submitted to the Department of Health and Human Services (DHHS) in the state of New Hampshire, USA in 2017. We found a remarkably large genomic, phylogenetic and serotype variation among the S. enterica isolates, dominated by serotypes Enteritidis (sequence type [ST] 11), Heidelberg (ST 15) and Typhimurium (ST 19). Analysis of the distribution of single nucleotide polymorphisms in the core genome suggests that the ST 15 cluster is likely a previously undetected or cryptic outbreak event that occurred in the south/southeastern part of New Hampshire in August-September. We found that nearly all of the clinical S. enterica isolates carried horizontally acquired genes that confer resistance to multiple classes of antimicrobials, most notably aminoglycosides, fluoroquinolones and macrolides. Majority of the isolates (76.2%) carry at least four resistance determinants per genome. We also detected the genes mdtK and mdsABC that encode multidrug efflux pumps and the gene sdiA that encodes a regulator for a third multidrug resistance pump. Our results indicate rapid microevolution and geographical dissemination of multidrug resistant lineages over a short time span. These findings are critical to aid the DHHS and similar public health laboratories in the development of effective disease control measures, epidemiological studies and treatment options for serious Salmonella infections.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Population Surveillance , Salmonella Infections/drug therapy , Salmonella Infections/epidemiology , Salmonella enterica/genetics , Disease Outbreaks , Genetic Variation , Genome, Bacterial , Genomics , Humans , New Hampshire/epidemiology , Phylogeny , Salmonella enterica/drug effects , Serogroup
4.
Pathogens ; 9(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708148

ABSTRACT

One free-ranging Gray fox (Urocyon cinereoargenteus) underwent autopsy following neurologic disease, with findings including morbilliviral inclusions and associated lesions in numerous tissues, adenoviral intranuclear inclusions in bronchial epithelial cells, and septic pleuropneumonia, hepatitis, splenitis, and meningoencephalitis. Molecular diagnostics on fresh lung identified a strain within a distinct clade of canine distemper that is currently unique to wildlife in New England, as well as the emerging multi-host viral pathogen skunk adenovirus-1. Bacterial culture of fresh liver resulted in a pure growth of Listeria monocytogenes, with whole genome sequencing indicating that the isolate had a vast array of antimicrobial resistance and virulence-associated genes. One year later, a second fox was euthanized for inappropriate behavior in a residential area, and diagnostic workup revealed canine distemper and septic L. monocytogenes, with the former closely related to the distemper virus found in the previous fox and the latter divergent from the L. monocytogenes from the previous fox.

5.
J Clin Microbiol ; 58(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32269101

ABSTRACT

Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide. In the United States, New Hampshire was one of the 18 states that reported cases in the 2016 to 2018 multistate outbreak of multidrug-resistant C. jejuni Here, we aimed to elucidate the baseline diversity of the wider New Hampshire C. jejuni population during the outbreak. We used genome sequences of 52 clinical isolates sampled in New Hampshire in 2017, including 1 of the 2 isolates from the outbreak. Results revealed a remarkably diverse population composed of at least 28 sequence types, which are mostly represented by 1 or a few strains. A comparison of our isolates with 249 clinical C. jejuni from other states showed frequent phylogenetic intermingling, suggesting a lack of geographical structure and minimal local diversification within the state. Multiple independent acquisitions of resistance genes from 5 classes of antibiotics characterize the population, with 47/52 (90.4%) of the genomes carrying at least 1 horizontally acquired resistance gene. Frequently recombining genes include those associated with heptose biosynthesis, colonization, and stress resistance. We conclude that the diversity of clinical C. jejuni in New Hampshire in 2017 was driven mainly by the coexistence of phylogenetically diverse antibiotic-resistant lineages, widespread geographical mixing, and frequent recombination. This study provides an important baseline census of the standing pangenomic variation and drug resistance to aid the development of a statewide database for epidemiological studies and clinical decision making. Continued genomic surveillance will be necessary to accurately assess how the population of C. jejuni changes over the long term.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Anti-Bacterial Agents/pharmacology , Campylobacter Infections/epidemiology , Campylobacter jejuni/genetics , Drug Resistance, Bacterial/genetics , Genomics , Humans , New Hampshire/epidemiology , Phylogeny
6.
Sci Rep ; 10(1): 2003, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029878

ABSTRACT

Streptomyces bacteria are known for their prolific production of secondary metabolites, many of which have been widely used in human medicine, agriculture and animal health. To guide the effective prioritization of specific biosynthetic gene clusters (BGCs) for drug development and targeting the most prolific producer strains, knowledge about phylogenetic relationships of Streptomyces species, genome-wide diversity and distribution patterns of BGCs is critical. We used genomic and phylogenetic methods to elucidate the diversity of major classes of BGCs in 1,110 publicly available Streptomyces genomes. Genome mining of Streptomyces reveals high diversity of BGCs and variable distribution patterns in the Streptomyces phylogeny, even among very closely related strains. The most common BGCs are non-ribosomal peptide synthetases, type 1 polyketide synthases, terpenes, and lantipeptides. We also found that numerous Streptomyces species harbor BGCs known to encode antitumor compounds. We observed that strains that are considered the same species can vary tremendously in the BGCs they carry, suggesting that strain-level genome sequencing can uncover high levels of BGC diversity and potentially useful derivatives of any one compound. These findings suggest that a strain-level strategy for exploring secondary metabolites for clinical use provides an alternative or complementary approach to discovering novel pharmaceutical compounds from microbes.


Subject(s)
Bacterial Proteins/genetics , Biological Products/metabolism , Multigene Family , Secondary Metabolism/genetics , Streptomyces/metabolism , Animals , Anti-Bacterial Agents/metabolism , Antineoplastic Agents/metabolism , Bacterial Proteins/metabolism , Biosynthetic Pathways/genetics , Data Mining , Drug Development/methods , Genome, Bacterial , Genomics , Phylogeny , Streptomyces/genetics
7.
mSystems ; 5(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31937675

ABSTRACT

Salmonella is responsible for many nontyphoidal foodborne infections and enteric (typhoid) fever in humans. Of the two Salmonella species, Salmonella enterica is highly diverse and includes 10 known subspecies and approximately 2,600 serotypes. Understanding the evolutionary processes that generate the tremendous diversity in Salmonella is important in reducing and controlling the incidence of disease outbreaks and the emergence of virulent strains. In this study, we aim to elucidate the impact of homologous recombination in the diversification of S. enterica subspecies. Using a data set of previously published 926 Salmonella genomes representing the 10 S. enterica subspecies and Salmonella bongori, we calculated a genus-wide pan-genome composed of 84,041 genes and the S. enterica pan-genome of 81,371 genes. The size of the accessory genomes varies between 12,429 genes in S. enterica subsp. arizonae (subsp. IIIa) to 33,257 genes in S. enterica subsp. enterica (subsp. I). A total of 12,136 genes in the Salmonella pan-genome show evidence of recombination, representing 14.44% of the pan-genome. We identified genomic hot spots of recombination that include genes associated with flagellin and the synthesis of methionine and thiamine pyrophosphate, which are known to influence host adaptation and virulence. Last, we uncovered within-species heterogeneity in rates of recombination and preferential genetic exchange between certain donor and recipient strains. Frequent but biased recombination within a bacterial species may suggest that lineages vary in their response to environmental selection pressure. Certain lineages, such as the more uncommon non-enterica subspecies (non-S. enterica subsp. enterica), may also act as a major reservoir of genetic diversity for the wider population.IMPORTANCE S. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments.

8.
Front Microbiol ; 10: 552, 2019.
Article in English | MEDLINE | ID: mdl-30949149

ABSTRACT

Streptomyces rimosus is best known as the primary source of the tetracycline class of antibiotics, most notably oxytetracycline, which have been widely used against many gram-positive and gram-negative pathogens and protozoan parasites. However, despite the medical and agricultural importance of S. rimosus, little is known of its evolutionary history and genome dynamics. In this study, we aim to elucidate the pan-genome characteristics and phylogenetic relationships of 32 S. rimosus genomes. The S. rimosus pan-genome contains more than 22,000 orthologous gene clusters, and approximately 8.8% of these genes constitutes the core genome. A large part of the accessory genome is composed of 9,646 strain-specific genes. S. rimosus exhibits an open pan-genome (decay parameter α = 0.83) and high gene diversity between strains (genomic fluidity φ = 0.12). We also observed strain-level variation in the distribution and abundance of biosynthetic gene clusters (BGCs) and that each individual S. rimosus genome has a unique repertoire of BGCs. Lastly, we observed variation in recombination, with some strains donating or receiving DNA more often than others, strains that tend to frequently recombine with specific partners, genes that often experience recombination more than others, and variable sizes of recombined DNA sequences. We conclude that the high levels of inter-strain genomic variation in S. rimosus is partly explained by differences in recombination among strains. These results have important implications on current efforts for natural drug discovery, the ecological role of strain-level variation in microbial populations, and addressing the fundamental question of why microbes have pan-genomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...