Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Macromolecules ; 51(23): 9861-9870, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-31303680

ABSTRACT

The efficient synthesis of complex functional polymeric nanomaterials is often challenging. Ru-initiated ring-opening metathesis polymerization (ROMP) of multivalent macromonomers followed by cross-linking to form brush-arm star (BASP) polymers enables access to well-defined nano-structures with diverse functionality. This "brush-first" method leaves active Ru in the BASP microgel core, which could potentially be used in a subsequent "ROMP-out" (RO) step to introduce further modifications to the BASP structure via the addition of (macro)monomers. Here, we study this RO approach in depth. The efficiency of RO is assessed for a variety of BASP compositions using a combination of inductively coupled plasma mass spectrometry and gel permeation chromatography. To demonstrate the modularity of the RO process, arylboronic acid-functionalized BASPs were prepared; uptake of these RO-BASPs into hypersialylated cancer cells was enhanced relative to non-functionalized BASPs as determined by flow cytometry and fluorescence microscopy. In addition, the self-assembly of miktoarm BASPs prepared via brush-first and RO with different macromonomers is demonstrated. The combination of brush-first ROMP with RO provides a simple, modular strategy for access to a wide array of functional nanomaterials.

2.
Langmuir ; 28(29): 10934-41, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22746532

ABSTRACT

There is considerable current interest in developing methods to integrate nanoparticles into optical, electronic, and biological systems due to their unique size-dependent properties and controllable shape. We report herein a versatile new approach for covalent immobilization of nanoparticles onto substrates modified with photoactive, phthalimide-functional, self-assembled monolayers. Upon illumination with UV radiation, the phthalimide group abstracts a hydrogen atom from a neighboring organic molecule, leading to radical-based photografting reactions. The approach is potentially "universal" since virtually any polymeric or organic-inorganic hybrid nanoparticle can be covalently immobilized in this fashion. Because grafting is confined to illuminated regions that undergo photoexcitation, masking provides a simple and direct method for nanoparticle patterning. To illustrate the technique, nanoparticles formed from diblock copolymers of poly(styrene-b-polyethylene oxide) and laden with Hostasol Red dye are photografted and patterned onto glass and silicon substrates modified with photoactive phthalimide-silane self-assembled monolayers. Atomic force microscopy and X-ray photoelectron spectroscopy are applied to characterize the grafted nanoparticle films while confocal fluorescence microscopy is used to image patterned nanoparticle deposition.


Subject(s)
Nanoparticles/chemistry , Ultraviolet Rays , Congo Red/chemistry , Molecular Structure , Particle Size , Phthalimides/chemistry , Polyethylene Glycols/chemistry , Polystyrenes/chemistry , Silanes/chemistry , Silicon/chemistry , Surface Properties
3.
Langmuir ; 23(13): 7083-9, 2007 Jun 19.
Article in English | MEDLINE | ID: mdl-17521209

ABSTRACT

We describe the synthesis of thermoresponsive polymers made from N-isopropylacrylamide and varying amounts of a thiol-containing co-monomer, N,N'-cystaminebisacrylamide (P(NIPAm-co-CBAm)). Infrared spectroscopy revealed a backbone similar to that seen with pure PNIPAm. UV-vis spectroscopy showed that P(NIPAm-co-CBAm) undergoes a thermoresponsive phase transition around 32 degrees C in aqueous solution. The presence of the thiol groups enabled the polymer to adsorb onto gold surfaces. Following adsorption onto a gold surface, X-ray photoelectron spectroscopy showed a carbon/gold atomic ratio of 0.93 for a sample without CBAm and a ratio of 1.61 for a P(NIPAm-co-CBAm) sample with 0.20% CBAm. Quartz crystal microbalance (QCM) analysis showed increases in the mass of polymer adsorbed when the CBAm content in the polymer increased. The thermoresponsive behavior of the thin films on gold was investigated with contact angle and dissipative QCM analysis. Contact angles were measured for polymer films at both 25 and 60 degrees C. The largest temperature-induced alteration in the contact angle was seen with the 1.00% CBAm sample. Similarly, QCM-D results showed a significantly greater change in frequency and dissipation following a temperature change when CBAm was present than in pure NIPAm polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...