Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(6): 756-759, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36541631

ABSTRACT

Epoxidation of dicyclopentadiene (DCPD) is studied on a series of TiO2 catalysts using hydrogen peroxide as an oxidant. DCPD derivatives have applications in several areas including polymer, pharmaceutical and pesticide products. The control of selectivity leading to the desired product is important for many of these applications. Using experimental and computational studies, we show that the surface crystalline phases of TiO2 play crucial roles not only in the formation of peroxo species but also in the selective epoxidation of two different CC double bonds in DCPD.


Subject(s)
Hydrogen Peroxide , Titanium , Hydrogen Peroxide/chemistry , Catalysis
2.
Sci Rep ; 12(1): 12079, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840604

ABSTRACT

Nanostructured TiO2 and SnO2 possess reciprocal energy storage properties, but challenges remain in fully exploiting their complementary merits. Here, this study reports a strategy of chemically suturing metal oxides in a cushioning graphite network (SnO2[O]rTiO2-PGN) in order to construct an advanced and reliable energy storage material with a unique configuration for energy storage processes. The suggested SnO2[O]rTiO2-PGN configuration provides sturdy interconnections between phases and chemically wraps the SnO2 nanoparticles around disordered TiO2 (SnO2[O]rTiO2) into a cushioning plier-linked graphite network (PGN) system with nanometer interlayer distance (~ 1.2 nm). Subsequently, the SnO2[O]rTiO2-PGN reveals superior lithium-ion storage performance compared to all 16 of the control group samples and commercial graphite anode (keeps around 600 mAh g-1 at 100 mA g-1 after 250 cycles). This work clarifies the enhanced pseudo-capacitive contribution and the major diffusion-controlled energy storage kinetics. The validity of preventing volume expansion is demonstrated through the visualized image evidence of electrode integrity.

3.
ACS Appl Mater Interfaces ; 13(9): 11403-11413, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33636973

ABSTRACT

The role of countercations that do not bind to core nanocrystals (NCs) but rather ensure charge balance on ligand-exchanged NC surfaces has been rarely studied and even neglected. Such a scenario is unfortunate, as an understanding of surface chemistry has emerged as a key factor in overcoming colloidal NC limitations as catalysts. In this work, we report on the unprecedented role of countercations in ligand exchange for a colloidal transition metal dichalcogenide (TMD), WSe2, to tune the d-band center toward the Fermi level for enhanced hydrogen desorption. Conventional long-chain organic ligands, oleylamine, of WSe2 NCs are exchanged with short atomic S2- ligands having countercations to preserve the charge balance (WSe2/S2-/M+, M = Li, Na, K). Upon exchange with S2- ligands, the charge-balancing countercations are intercalated between WSe2 layers, thereby serving a unique function as an electrochemical hydrogen evolution reaction (HER) catalyst. The HER activity of ligand-exchanged colloidal WSe2 NCs shows a decrease in overpotential by down-shift of d-band center to induce more electron-filling in antibonding orbital and an increase in the electrochemical active surface area (ECSA). Exchanging surface functionalities with S2- anionic ligands enhances HER kinetics, while the existence of intercalated countercations improves charge transfer with the electrolyte. The obtained results suggest that both anionic ligands and countercationic species in ligand exchange must be considered to enhance the overall catalytic activity of colloidal TMDs.

4.
Nanoscale ; 13(2): 1291-1302, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33409525

ABSTRACT

Controlling surface energies of each facet is essential for the anisotropic growth of two-dimensional transition metal chalcogenides (TMCs). However, it is a challenge due to stronger binding energies of ligand head groups to the edge facets compared to the planar facets. Herein, we demonstrate that the adsorption of ligands on metal positions can induce partial electron localization on the chalcogen sites, and then accelerate metal-chalcogen bond formation for enhanced anisotropic growth of nanosheets. And only in the case of trioctylphosphine oxide (TOPO)-adsorbed nanosheets, surface polarization can be unveiled on the surface of the colloidal nanosheets due to restricted development of nonpolar ligand shells by the steric effects of the ligands. Moreover, density functional theory (DFT) calculation results reveal that the decrease of surface energy on the (100) edge facets as well as the increase on the (001) basal facets by the adsorption of triorganylphosphine oxide also contribute to the preferentially lateral growth. As a result, various 2D TMCs, including MoSe2, WSe2, and SnSe2 synthesized with TOPO, show enhanced anisotropic growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...