Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mar Biotechnol (NY) ; 24(4): 690-705, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35796894

ABSTRACT

Excessive osteoclast differentiation and/or bone resorptive function causes a gradual loss of bone, leading to the pathogenesis of bone diseases such as osteoporosis (OP). In this study, a sulfated glucuronorhamnoxylan polysaccharide (designated SPS-CF) of the green alga Capsosiphon fulvescens was evaluated for anti-osteoporotic activity using osteoclastic cells differentiated from RAW264.7 macrophages by receptor activator of NF-κB ligand (RANKL) treatment and ovariectomized (OVX) female mice as a postmenopausal OP model. With negligible cytotoxicity, SPS-CF (50 µg/mL) significantly suppressed tartrate-resistant acid phosphatase (TRAP) activity, actin ring formation, and expression of matrix metalloproteinase 9 (MMP-9), cathepsin K, TRAF6, p-Pyk2, c-Cbl, c-Src, gelsolin, carbonic anhydrase II (CA II), and integrin ß3, indicating that SPS-CF inhibits the differentiation and bone resorptive function of osteoclasts. Removal of sulfate groups from SPS-CF abolished its anti-osteoclastogenic activities, demonstrating that sulfate groups are critical for its activity. Oral administration of SPS-CF (400 mg/kg/day) to OVX mice significantly augmented the bone mineral density (BMD) and serum osteoprotegerin (OPG)/RANKL ratio. These results demonstrated that SPS-CF exerts significant anti-osteoporotic activity by dampening osteoclastogenesis and bone resorption via downregulation of TRAF6-c-Src-Pyk2-c-Cbl-gelsolin signaling and augmentation of serum OPG/RANKL ratios in OVX mice, suggesting that SPS-CF can be a novel anti-osteoporotic compound for treating postmenopausal OP.


Subject(s)
Bone Resorption , Chlorophyta , Osteoporosis , Animals , Bone Resorption/drug therapy , Cell Differentiation , Chlorophyta/metabolism , Female , Focal Adhesion Kinase 2/metabolism , Gelsolin/metabolism , Mice , NF-kappa B/metabolism , Osteoporosis/drug therapy , Sulfates/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism
2.
Life Sci ; 270: 119074, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33497739

ABSTRACT

AIM: Due to on-going safety concerns or lack of efficacy of currently used medications for the treatment of osteoporosis (OP), identifying new therapeutic agents is an important part of research. In the present study, potential anti-osteoporotic activity of a natural flavonoid glycoside, trilobatin (phloretin 4-O-glucoside, Tri) was evaluated. MATERIAL AND METHODS: Osteoclastic cells were established by treating the RAW264.7 macrophage cells with RANKL and ovariectomized (OVX) C57BL/6 female mice were used as an animal model of postmenopausal OP. Actin ring formation, expression levels of osteoclastogenic marker genes and bone resorptive proteins were measured by RT-PCR, western blot, or fluorometric assays. Bone mineral density (BMD) was determined by pDEXA densitometric measurement and serum osteoprotegerin (OPG) and RANKL were measured by ELISA. KEY FINDING: Tri (5-20 µM) significantly inhibited osteoclast formation and actin ring formation in RANKL-induced osteoclasts. Tri attenuated expression of osteoclastogenic genes (MMP-9 and cathepsin K), bone resorptive proteins (CA II and integrin ß3), and osteoclastogenic signalling proteins (TRAF6, p-Pyk2, c-Cbl, and c-Src). Oral administration of Tri to OVX mice augmented BMD and serum OPG/RANKL ratio. Interestingly, while Tri and phloretin aglycone (Phl) showed similar levels of in vitro anti-osteoclastogenic activity, Tri more potently ameliorated bone loss than Phl in OVX mice. SIGNIFICANCE: This study demonstrated that Tri inhibits osteoclastic cell differentiation and bone resorption by down-regulating the expression of osteoclastogenic marker genes and signalling proteins, bone resorptive proteins, and by augmenting serum OPG/RANKL ratio, suggesting that Tri can be a novel anti-osteoporotic compound for treating senile and postmenopausal OP.


Subject(s)
Flavonoids/pharmacology , Osteoporosis/drug therapy , Polyphenols/pharmacology , Animals , Bone Density/drug effects , Bone Resorption/drug therapy , Bone Resorption/metabolism , Cell Differentiation/drug effects , Disease Models, Animal , Female , Flavonoids/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts , Osteogenesis/drug effects , Polyphenols/metabolism , RAW 264.7 Cells
3.
Article in English | MEDLINE | ID: mdl-32256659

ABSTRACT

The present study aimed to evaluate the potential synergistic and protective effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extract in a ratio of 7 : 3, against hepatic steatosis in high fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) mice. Forty-eight mice were randomly divided into eight groups and orally administered daily for 6 weeks with a normal diet (ND) or high fat diet alone (HFD), HFD with AM (HFD + 100 mg/kg AM extract), HFD with LE (HFD + 100 mg/kg LE extract), HFD with ALM16 (HFD + 50, 100, and 200 mg/kg ALM16), or HFD with MT (HFD + 100 mg/kg Milk thistle extract) as a positive control. ALM16 significantly decreased the body and liver weight, serum and hepatic lipid profiles, including triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL), and low-density lipoprotein-cholesterol (LDL), and serum glucose levels, compared to the HFD group. Moreover, ALM16 significantly ameliorated the HFD-induced increased hepatic injury markers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT)-1. Furthermore, as compared to the mice fed HFD alone, ALM16 increased the levels of phosphorylated AMP-activated protein kinase (p-AMPK) and acetyl-CoA carboxylase (p-ACC), thereby upregulating the expression of carnitine palmitoyltransferase (CPT)-1 and downregulating the expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS). These results demonstrated that ALM16 markedly inhibited HFD-induced hepatic steatosis in NAFLD mice by modulating AMPK and ACC signaling pathways, and may be more effective than the single extracts of AM or LE.

4.
ACS Appl Mater Interfaces ; 10(47): 40681-40691, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30381941

ABSTRACT

A series of diketopyrrolopyrrole (DPP)-based copolymers, with DPP and bithiophene (BT) as the electron-acceptor and donor backbone units, respectively, are synthesized with branched alkyl side chains that are either directly coupled to the N-positions of DPP or separated by an alkyl ester group. The ester moieties in the side chains induce specific cohesive molecular interactions between these side chains, as compared to the alkyl-only side chains with weak van der Waals interactions. Structure analysis of the DPPBT-based copolymers demonstrated that the introduction of a proper alkyl ester spacer to the branched alkyl chains can shorten the π-π stacking distance between the DPPBT backbones down to 3.61 Å and promote the development of two-dimensionally extended domains. DPPBT-based copolymers, including different branched alkyl ester-labeled side chains, are spun-cast on polymer-treated SiO2 dielectrics from dilute chloroform solutions for organic thin-film transistors. A DPPBT-based copolymer with properly engineered side chains (i.e., 2-decyltetradecyl ester-labeled side chains) shows the highest hole mobility of 2.30 cm2 V-1 s-1 and an on/off current ratio of above 106.

5.
ACS Appl Mater Interfaces ; 10(17): 14966-14977, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29630336

ABSTRACT

In this work, three-armed luminogens IAcTr-out and IAcTr-in were synthesized and used as emitters bearing triazine and indenoacridine moieties in thermally activated delayed fluorescence organic light-emitting diodes (OLEDs). These molecules could form a uniform thin film via the solution process and also allowed the subsequent deposition of an electron transporting layer either by vacuum deposition or by an all-solution coating method. Intriguingly, the new luminogens displayed aggregation-induced emission (AIE), which is a unique photophysical phenomenon. As a nondoped emitting layer (EML), IAcTr-in showed external quantum efficiencies (EQEs) of 11.8% for the hybrid-solution processed OLED and 10.9% for the all-solution processed OLED with a low efficiency roll-off. This was evident by the higher photoluminescence quantum yield and higher rate constant of reverse intersystem crossing of IAcTr-in, as compared to IAcTr-out. These AIE luminogens were used as dopants and mixed with the well-known host material 1,3-bis( N-carbazolyl)benzene (mCP) to produce a high-efficiency OLED with a two-component EML. The maximum EQE of 17.5% was obtained when using EML with IAcTr-out doping (25 wt %) into mCP, and the OLED with EML bearing IAcTr-in and mCP showed a higher maximum EQE of 18.4% as in the case of the nondoped EML-based device.

6.
ACS Appl Mater Interfaces ; 9(10): 8838-8847, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28233973

ABSTRACT

New small molecules having modified acceptor strength and π-conjugation length and containing dicyanovinylene (DCV) and tricyanovinylene (TCV) as a strongly electron-accepting unit with indacenodithiophene, IDT(DCV)2, IDT(TCV)2, and IDTT(TCV)2, were synthesized and studied in terms of their applicability to polymer solar cells with PTB7-Th as an electron-donating polymer. Intriguingly, the blended films containing IDT(TCV)2 and IDTT(TCV)2 exhibited superior shelf life stabilities of more than 1000 h without any reduction in the initial power conversion efficiency. The low-lying lowest unoccupied molecular orbital energy levels and robust internal morphologies of small TCV-containing molecules could afford excellent shelf life stability.

7.
Chem Commun (Camb) ; 52(57): 8873-6, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27351371

ABSTRACT

New M- and V-shaped perylene diimide (PDI)-based small molecules using a non-conjugated 1,1-diphenylcyclohexane linker (CP-M and CP-V, respectively) were designed and synthesized as new n-type acceptors for nonfullerene-based polymer solar cells. The blended film with poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PPDT2FBT) and CP-V displayed a higher power conversion efficiency of 5.28% due to higher short circuit current and fill factor values.

8.
ACS Appl Mater Interfaces ; 7(51): 28303-10, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26645584

ABSTRACT

New regular and random diketopyrrolopyrrole (DPP)-based terpolymers (i.e., Reg-PBDPPT and Ran-PBDPPT, respectively) bearing DPP as an electron deficient unit and 2,2'-bithiophene and (E)-1,2-di(thiophen-2-yl)ethene as electron donating units were designed and synthesized, and their performance in photovoltaic cells was investigated precisely. The absorption properties and highest occupied molecular orbital (HOMO) of Reg-PBDPPT were found to be different from those of Ran-PBDPPT. The results of grazing incidence X-ray diffraction experiments revealed that Ran-PBDPPT typically had a predominantly edge-on chain orientation on the substrate, whereas Reg-PBDPPT showed mixed chain orientation both in pristine and thermally annealed films. Although Reg-PBDPPT exhibited a lower degree of edge-on chain orientation on the substrate, the corresponding TFTs showed a high hole mobility of 0.42-0.96 cm(2) V(-1) s(-1) and maintained a high current on/off ratio (>10(6)). A polymer solar cell (PSC) composed of Reg-PBDPPT and PC71BM exhibited power conversion efficiencies (PCE) of 5.24-5.45%, which were higher than those of the Ran-PBDPPT-based PSCs. The enhanced efficiency was supported by an increase in the short circuit current, which is strongly related to the unique internal crystalline morphology and pronounced nanophase segregation behavior in the blend films. These results obviously manifested that this synthetic strategy for regular conjugated terpolymers could be employed to control morphological properties to obtain high-performance PSCs.

9.
ACS Appl Mater Interfaces ; 7(5): 3280-8, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25590328

ABSTRACT

New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

10.
Phytomedicine ; 14(2-3): 232-5, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16427264

ABSTRACT

To investigate the putative mediation of peripheral benzodiazepine receptor (PBR) in the cytotoxicity of flavonoids, in this study, modulatory effects of several flavonoids on the lipid peroxide (LPO) production and PBR mRNA expression of human neuroblastoma cells were observed. Elevated levels of peroxidated products in cancer cells may activate pro-apoptotic and anti-proliferative signaling pathways. Treatment of 10(-6) M 4'-chlorodiazepam and PK 11195 ligands of the PBR for 6 days enhanced the generation of LPO of the human neuroblastoma cells. Several flavonoids, well-known cytotoxic substances, potentiated the enhancement of LPO production by PBR ligands. Treatment of 10(-6) M flavonoids for 6 days elevated the expression of PBR mRNA in cells. These findings indicate that the potential of flavonoids to induce apoptosis in cancer cells is strongly associated with their PBR-inducing properties, thereby providing a new mechanism by which polyphenolic compounds may exert their cancer-preventive and anti-neoplastic effects.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Benzodiazepinones/metabolism , Flavonoids/pharmacology , Phytotherapy , Plants, Medicinal , Up-Regulation/drug effects , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/therapeutic use , Benzodiazepinones/agonists , Benzodiazepinones/pharmacology , Cell Line, Tumor/drug effects , DNA Primers , Flavonoids/administration & dosage , Flavonoids/therapeutic use , Humans , Lipid Peroxides , Neuroblastoma/pathology , RNA, Messenger/analysis , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...