Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806124

ABSTRACT

This study examined the effect of adding synthetic fibers, that is, polypropylene (PP) and nylon (Ny), on explosive spalling and residual tensile mechanical properties of high-performance fiber-reinforced cementitious composites (HPFRCCs). Three different matrix strengths (100 MPa, 140 MPa, and 180 MPa), four different volume contents of the synthetic fibers (0%, 0.2%, 0.4%, and 0.6%), and three different exposure time (1 h, 2 h, and 3 h) based on the Internatinoal Organization for Standardization (ISO) fire curve were adopted as variables for this experiment. The experimental results revealed that the addition of synthetic fibers improved the resistance to explosive spalling induced by high-temperature, especially when PP and Ny were mixed together. For a higher matrix strength, greater volume content of the synthetic fibers was required to prevent explosive spalling, and higher residual strengths were obtained after the fire tests. An increase in the volume fraction of the synthetic fibers clearly prevented explosive spalling but did not affect the residual tensile strength. In the case of a higher matrix strength, a reduction in the strength ratio was observed with increased exposure time.

2.
Materials (Basel) ; 13(22)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202917

ABSTRACT

This study aims to investigate the relationship between the steel fibers and the electromagnetic wave shielding effectiveness of a high-performance fiber-reinforced cementitious composite (HPFRCC). The distribution characteristics of the steel fibers and the variation of the electrical conductivity of HPFRCC as a function of the fiber content were quantified based on micro computed tomography (CT) and impedance measurements to determine their correlations with the electromagnetic shielding effectiveness. The impedance results showed that no electrical network was formed in the composite by the steel fibers and it is difficult to manufacture HPFRCC with high-electrical conductivity using steel fibers alone without CNTs or other carbon-based materials. For the steel fiber content of greater than 0.5%, the number of contact points between the steel fibers increased significantly, and the relationship between the fiber content and the number of contact points was observed. Despite the improvement of the electrical conductivity owing to the presence of the steel fibers and to the increase in the contact points between the steel fibers, the shielding effectiveness did not increase further for the steel fiber contents equal or above 1.5%. Consequently, it was found that the factor that controls the shielding effectiveness of HPFRCC is not the electrical network of the steel fibers, but the degree of the dispersion of the individual steel fibers.

3.
Materials (Basel) ; 13(8)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32294925

ABSTRACT

This study aims to examine the mechanical, shrinkage and chemical properties of photocatalytic cementitious materials containing synthetic fibers and a shrinkage-reducing admixture (SRA). Two types of titanium dioxide (TiO2) powders and white Portland cement were considered along with ordinary Portland cement (OPC) as a control. Two types of synthetic fibers, i.e., glass and polyethylene (PE), and an SRA with contents varying from 0% to 3% were also considered. Using the TiO2 powders and the white Portland cement was effective in reducing the nitrogen oxides (NOx) concentration in cement composites. The use of PE fibers was more effective than glass fibers in terms of the mechanical properties, i.e., the compressive strength and tensile performance. With the addition of TiO2 powders and SRA or the replacement of OPC with white cement, the mechanical properties of the cement mortar generally deteriorated. The total shrinkage of the mortar could be reduced by incorporating the fibers at volume fractions greater than 1%, and the glass fiber was more effective than the PE fiber in this regard. The TiO2 powders had no significant impact on the shrinkage reduction of the cement mortar, whereas the SRA and the white Portland cement effectively reduced shrinkage. The addition of 3% SRA decreased the total shrinkage by 43%, while the replacement of the OPC with white cement resulted in a 20% reduction in the shrinkage.

4.
Materials (Basel) ; 12(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683748

ABSTRACT

This study aimed to investigate the effect of multi-walled carbon nanotubes (MWCNTs) and steel fibers on the AC impedance and electromagnetic shielding effectiveness (SE) of a high-performance, fiber-reinforced cementitious composite (HPFRCC). The electrical conductivity of the 100 MPa HPFRCC with 0.30% MWCNT was 0.093 S/cm and that of the 180 MPa HPFRCC with 0.4% MWCNT and 2.0% steel fiber was 0.10 S/cm. At 2.0% steel fiber and 0.3% MWCNT contents, the electromagnetic SE values of the HPFRCC were 45.8 dB (horizontal) and 42.1 dB (vertical), which are slightly higher than that (37.9 dB (horizontal)) of 2.0% steel fiber content and that (39.2 dB (horizontal)) of 0.3% MWCNT content. The incorporation of steel fibers did not result in any electrical percolation path in the HPFRCC at the micro level; therefore, a high electrical conductivity could not be achieved. At the macro level, the proper dispersion of the steel fibers into the HPFRCC helped reflect and absorb the electromagnetic waves, increasing the electromagnetic SE. The incorporation of steel fibers helped improve the electromagnetic SE regardless of the formation of percolation paths, whereas the incorporation of MWCNTs helped improve the electromagnetic SE only when percolation paths were formed in the cement matrix.

5.
Materials (Basel) ; 10(2)2017 Jan 28.
Article in English | MEDLINE | ID: mdl-28772477

ABSTRACT

In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths (lf) of 13, 19.5, and 30 mm and four different volume fractions (vf) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers (lf of 13 mm) with longer fibers (lf of 19.5 mm and 30 mm).

SELECTION OF CITATIONS
SEARCH DETAIL
...