Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 38(7): 110386, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172136

ABSTRACT

B-1 cell development mainly occurs via fetal and neonatal hematopoiesis and is suppressed in adult bone marrow hematopoiesis. However, little is known about the factors inhibiting B-1 cell development at the adult stage. We report that capicua (CIC) suppresses postnatal B-1a cell development and survival. CIC levels are high in B-1a cells and gradually increase in transitional B-1a (TrB-1a) cells with age. B-cell-specific Cic-null mice exhibit expansion of the B-1a cell population and a gradual increase in TrB-1a cell frequency with age but attenuated B-2 cell development. CIC deficiency enhances B cell receptor (BCR) signaling in transitional B cells and B-1a cell viability. Mechanistically, CIC-deficiency-mediated Per2 derepression upregulates Bhlhe41 levels by inhibiting CRY-mediated transcriptional repression for Bhlhe41, consequently promoting B-1a cell formation in Cic-null mice. Taken together, CIC is a key transcription factor that limits the B-1a cell population at the adult stage and balances B-1 versus B-2 cell formation.


Subject(s)
B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Period Circadian Proteins/metabolism , Repressor Proteins/metabolism , Signal Transduction , Animals , Animals, Newborn , Apoptosis , Base Sequence , Bone Marrow/embryology , Cell Differentiation , Cell Survival , Child , Child, Preschool , Fetus/embryology , HEK293 Cells , Humans , Liver/embryology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , NIH 3T3 Cells , Receptors, Antigen, B-Cell/metabolism
2.
Front Mol Biosci ; 9: 1030725, 2022.
Article in English | MEDLINE | ID: mdl-36619173

ABSTRACT

Activation of receptor tyrosine kinase signaling inactivates capicua (CIC), a transcriptional repressor that functions as a tumor suppressor, via degradation and/or cytoplasmic translocation. Although CIC is known to be inactivated by phosphorylation, the mechanisms underlying the cytoplasmic translocation of CIC remain poorly understood. Therefore, we aimed to evaluate the roles of extracellular signal-regulated kinase (ERK), p90RSK, and c-SRC in the epidermal growth factor receptor (EGFR) activation-induced cytoplasmic translocation of CIC and further investigated the molecular basis for this process. We found that nuclear ERK induced the cytoplasmic translocation of CIC-S. We identified 12 serine and threonine (S/T) residues within CIC, including S173 and S301 residues that are phosphorylated by p90RSK, which contribute to the cytoplasmic translocation of CIC-S when phosphorylated. The amino-terminal (CIC-S-N) and carboxyl-terminal (CIC-S-C) regions of CIC-S were found to interact with each other to promote their nuclear localization. EGF treatment disrupted the interaction between CIC-S-N and CIC-S-C and induced their cytoplasmic translocation. Alanine substitution for the 12 S/T residues blocked the cytoplasmic translocation of CIC-S and consequently enhanced the tumor suppressor activity of CIC-S. Our study demonstrates that ERK-mediated disruption of intramolecular interaction of CIC is critical for the cytoplasmic translocation of CIC, and suggests that the nuclear retention of CIC may represent a strategy for cancer therapy.

3.
Elife ; 102021 12 13.
Article in English | MEDLINE | ID: mdl-34895467

ABSTRACT

Central tolerance is achieved through positive and negative selection of thymocytes mediated by T cell receptor (TCR) signaling strength. Thus, dysregulation of the thymic selection process often leads to autoimmunity. Here, we show that Capicua (CIC), a transcriptional repressor that suppresses autoimmunity, controls the thymic selection process. Loss of CIC prior to T-cell lineage commitment impairs both positive and negative selection of thymocytes. CIC deficiency attenuated TCR signaling in CD4+CD8+ double-positive (DP) cells, as evidenced by a decrease in CD5 and phospho-ERK levels and calcium flux. We identified Spry4, Dusp4, Dusp6, and Spred1 as CIC target genes that could inhibit TCR signaling in DP cells. Furthermore, impaired positive selection and TCR signaling were partially rescued in Cic and Spry4 double mutant mice. Our findings indicate that CIC is a transcription factor required for thymic T cell development and suggests that CIC acts at multiple stages of T cell development and differentiation to prevent autoimmunity.


Subject(s)
Receptors, Antigen, T-Cell/genetics , Repressor Proteins/genetics , Selection, Genetic , Signal Transduction , T-Lymphocytes/metabolism , Thymus Gland/immunology , Animals , Female , Male , Mice , Receptors, Antigen, T-Cell/metabolism , Repressor Proteins/metabolism
4.
Immune Netw ; 20(5): e43, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163251

ABSTRACT

Capicua (CIC) is a transcriptional repressor that regulates several developmental processes. CIC deficiency results in lymphoproliferative autoimmunity accompanied by expansion of CD44hiCD62Llo effector/memory and follicular Th cell populations. Deletion of Cic alleles in hematopoietic stem cells (Vav1-Cre-mediated knockout of Cic) causes more severe autoimmunity than that caused by the knockout of Cic in CD4+CD8+ double positive thymocytes (Cd4-Cre-mediated knockout of Cic). In this study, we compared splenic CD4+ T cell activation and proliferation between whole immune cell-specific Cic-null (Cicf/f;Vav1-Cre) and T cell-specific Cic-null (Cicf/f;Cd4-Cre) mice. Hyperactivation and hyperproliferation of CD4+ T cells were more apparent in Cicf/f;Vav1-Cre mice than in Cicf/f;Cd4-Cre mice. Cicf/f;Vav1-Cre CD4+ T cells more rapidly proliferated and secreted larger amounts of IL-2 upon TCR stimulation than did Cicf/f;Cd4-Cre CD4+ T cells, while the TCR stimulation-induced activation of the TCR signaling cascade and calcium flux were comparable between them. Mixed wild-type and Cicf/f;Vav1-Cre bone marrow chimeras also exhibited more apparent hyperactivation and hyperproliferation of Cic-deficient CD4+ T cells than did mixed wild-type and Cicf/f;Cd4-Cre bone marrow chimeras. Taken together, our data demonstrate that CIC deficiency at the beginning of T cell development endows peripheral CD4+ T cells with enhanced T cell activation and proliferative capability.

5.
Nat Commun ; 8: 16037, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28855737

ABSTRACT

High-affinity antibody production through the germinal centre (GC) response is a pivotal process in adaptive immunity. Abnormal development of follicular helper T (TFH) cells can induce the GC response to self-antigens, subsequently leading to autoimmunity. Here we show the transcriptional repressor Capicua/CIC maintains peripheral immune tolerance by suppressing aberrant activation of adaptive immunity. CIC deficiency induces excessive development of TFH cells and GC responses in a T-cell-intrinsic manner. ETV5 expression is derepressed in Cic null TFH cells and knockdown of Etv5 suppresses the enhanced TFH cell differentiation in Cic-deficient CD4+ T cells, suggesting that Etv5 is a critical CIC target gene in TFH cell differentiation. Furthermore, we identify Maf as a downstream target of the CIC-ETV5 axis in this process. These data demonstrate that CIC maintains T-cell homeostasis and negatively regulates TFH cell development and autoimmunity.


Subject(s)
Autoimmunity , DNA-Binding Proteins/metabolism , Germinal Center/physiology , Repressor Proteins/physiology , T-Lymphocytes, Helper-Inducer/physiology , Transcription Factors/metabolism , Animals , Cell Differentiation , Female , Homeostasis , Immune Tolerance , Male , Mice, Inbred C57BL
6.
Oncotarget ; 6(27): 23533-47, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26124181

ABSTRACT

Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type-1 (SCA1) neurodegenerative disease and some types of cancer; however, the role of CIC in prostate cancer remains unknown. Here we show that CIC suppresses prostate cancer progression. CIC expression was markedly decreased in human prostatic carcinoma. CIC overexpression suppressed prostate cancer cell proliferation, invasion, and migration, whereas CIC RNAi exerted opposite effects. We found that knock-down of CIC derepresses expression of ETV5 and CRABP1 in LNCaP and PC-3 cells, respectively, thereby promoting cell proliferation and invasion. We also discovered that miR-93, miR-106b, and miR-375, which are known to be frequently overexpressed in prostate cancer patients, cooperatively down-regulate CIC levels to promote cancer progression. Altogether, we suggest miR-93/miR-106b/miR-375-CIC-CRABP1 as a novel key regulatory axis in prostate cancer progression.


Subject(s)
Carcinoma/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , Receptors, Retinoic Acid/metabolism , Repressor Proteins/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/metabolism , Disease Progression , Down-Regulation , Gene Expression Profiling , Humans , Male , Microscopy, Fluorescence , Neoplasm Invasiveness , RNA Interference , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...