Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Chem ; 8: 574986, 2020.
Article in English | MEDLINE | ID: mdl-33240842

ABSTRACT

In this study, a novel chloride ion (Cl-) sensor based on Ag wire coated with an AgCl layer was fabricated using a gel-type internal electrolyte and a diatomite ceramic membrane, which played an important role in preventing electrolyte leakage from the ion-selective electrode. The sensing performance, including reversibility, response, recovery time, low detection limit, and the long-term stability, was systemically investigated in electrolytes with different Cl- contents. The as-fabricated Cl- sensor could detect Cl- from 1 to 500 mM KCl solution with good linearity. The best response and recovery time obtained for the optimized sensor were 0.5 and 0.1 s, respectively, for 10 mM KCl solution. An exposure period of over 60 days was used to evaluate the stability of the Cl- sensor in KCl solution. A relative error of 2% was observed between the initial and final response potentials. Further, a wireless sensing system based on Arduino was also investigated to measure the response potential of Cl- in an electrolyte. The sensor exhibited high reliability with a low standard error of measurement. This type of sensor is crucial for fabricating wireless Cl- sensors for applications in reinforced concrete structures along with favorable performances.

2.
J Nanosci Nanotechnol ; 16(3): 2900-3, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27455730

ABSTRACT

Novel materials based on Zn(HPB)2 and Ir-complexes were synthesized as blue or red emitters, respectively. White organic light emitting diodes were fabricated using the Zn(HPB)2 as a blue emitting layer, Ir-complexes as a red emitting layer and Alq3 as a green emitting layer. The obtained experimental results, were based on white OLEDs fabricated using double emission layers of Zn(HPB)2 and Alq3:Ir-complexes. The doping rate of the Ir-complexes was varied at 0.4%, 0.6%, 0.8% and 1.0%. When the doping rate of the Alq3:Ir-complexes was 0.6%, a white emission was achieved. The Commission Internationale de l'Eclairage coordinates of the device's white emission were (0.316, 0.331) at an applied voltage of 10.75 V.


Subject(s)
Light , Fluorescence
3.
J Nanosci Nanotechnol ; 16(6): 6374-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427721

ABSTRACT

We synthesized the red emission material, bis(1,4-bis(5-phenyloxazol-2-yl)phenyl) iridium(picolate) [Ir-complexes] and the blue emission material, bis (2-(2-hydroxyphenyl) benzoxazolate)zinc [Zn(HPB)2]. White Organic Light Emitting Diodes were fabricated by using Zn(HPB)2 for a blue emitting layer, Ir-complexes for a red emitting layer and a tris (8-hydroxy quinoline)aluminum [Alq3] for a green emitting layer. The important experimental results obtained, white OLED was fabricated by using double emitting layers of Zn(HPB)2 and Alq3:Ir-complexes, and hole blocking layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline[BCP]. We also varied the thickness of BCP. When the thickness of BCP layer was 5 nm, white emission was achieved. We obtained a maximum luminance of 5400 cd/m2 at a current density of 650 mA/cm2. The CIE coordinates was (0.339, 0.323) at voltage of 10 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...