Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(43): e2206625, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36103670

ABSTRACT

Lithium-metal batteries (LMBs) are representative of post-lithium-ion batteries with the great promise of increasing the energy density drastically by utilizing the low operating voltage and high specific capacity of metallic lithium. LMBs currently stand at a point of transition at which the accumulation of knowledge from fundamental research is being translated into large-scale commercialization. This review summarizes the available strategies for addressing the intrinsic shortcomings of LMBs, such as the suppression of dendritic growth and parasitic reactions from the material to the electrode to the cell level. The discussion pertaining to the cell level includes efforts and concerns relating to scaling up established knowledge and expertise with the view of commercialization. This review intends to encourage researchers in both fundamental research institutions and industry to make a synergistic effort and share their views comprehensively to ensure that LMB technology continues to evolve in harmony to become a mature technology.

2.
J Colloid Interface Sci ; 581(Pt A): 396-402, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32771748

ABSTRACT

Capacitive deionization (CDI) is an emerging desalination technology with an environmental-friendly operation and energy-efficient properties. However, activated carbon (AC) used for CDI electrode does not have a significant preference toward anions, leading to unnecessary energy consumption for treating fluoridated water. Hence, we achieved selective fluoride removal in CDI system using a reduced graphene oxide/hydroxyapatite composite (rGO/HA), a novel fluoride selective electrode material. The results showed that the rGO/HA electrode has 4.9 times higher fluoride removal capacity than the AC electrode from a ternary solution consisting of fluoride, chloride, and nitrate ions. The fluoride removal capacity increased when the adequate voltage was applied. Furthermore, the rGO/HA electrode exhibited stability and reusability without significant capacity loss even after 50-cycle operation, maintaining about 0.21 mmol g-1 of fluoride removal capacity and approximately 96% of regeneration efficiency. Thus, this study suggests a novel electrode material for effective and selective fluoride removal in the CDI system.

SELECTION OF CITATIONS
SEARCH DETAIL
...